DELEGATED REPORT

TO: SENIOR PLANNER

FROM: Planning Officer

FILE: OPW/21/0001 (Stage 3)

DATE: 4 April 2022

APPLICATION DETAILS

APPLICATION		PRE	MISES
FILE NO:	OPW/21/0001	ADDRESS:	Emerald
	(Country Road Stage 3)		End Road and Country
			Road,
			Mareeba
APPLICANT:	Conmat No 2 Pty	RPD:	Lot 200 on
	Ltd		SP323217
LODGED BY:	Benchmark	AREA:	34.62 ha
	Survey & Design		
DATE LODGED:	12 February 2022	OWNER:	Conmat No
			2 Pty Ltd
TYPE OF APPROVAL:	Development Perm	it	
PROPOSED DEVELOPMENT:	Operational Work	s (Roadworks	s, Earthworks,
	Stormwater and W	ater Reticulati	on for Stage 3
	(11 Lots) of Develo	pment Permit I	REC/08/0096)
PLANNING SCHEME:	Mareeba Shire Cou	Incil Planning	Scheme 2016
ZONE:	Rural Residential z	one	
LEVEL OF	Code Assessment		
ASSESSMENT:			

PREVIOUS APPLICATIONS & APPROVALS

REC/08/0096

DESCRIPTION OF PROPOSED DEVELOPMENT

The development application seeks a Development Permit for Operational Works (Roadworks, Earthworks, Stormwater and Water Reticulation for Stage 3 (11 Lots) of Development Permit REC/08/0096) - **Country Road Estate Stage 3**

ASSESSMENT

State Planning Policy

Separate assessment against the State Planning Policy (SPP) is not required because the Mareeba Shire Council Planning Scheme appropriately integrates all relevant aspects of the SPP.

Relevant Development Codes

The following Development Codes are considered to be applicable to the assessment of the application:

- 6.2.10 Rural residential zone code
- 9.4.4 Reconfiguring a lot code
- 9.4.5 Works, services and infrastructure code

The application did not include a planning report and assessment against the planning scheme. An officer assessment has found that the application satisfies the relevant acceptable solutions (or probable solutions/performance criteria where no acceptable solution applies) of the relevant codes set out below.

Relevant Codes	Comments
Rural residential zone code	The application can be conditioned to comply with the relevant acceptable outcomes contained within the code.
Reconfiguring a lot code	The application can be conditioned to comply with the relevant acceptable outcomes contained within the code.
Works, services and infrastructure code	The application can be conditioned to comply with the relevant acceptable outcomes contained within the code.

Compliance with conditions of earlier related approval

REC/08/0096

- 1. Development must be carried out substantially in accordance with the approved plans and the facts and circumstances of the use as submitted with the application, subject to any alterations:
 - found necessary by Council's delegated officer at the time of examination of the engineering plans or during construction of the development because of particular engineering requirements; and
 - to ensure compliance with the following conditions of approval.
- 2. Timing of Effect

The conditions of the development permit must be complied with to the satisfaction of Council's delegated officer prior to the endorsement of the plan of survey, except where specified otherwise in these conditions of approval.

- 3. General
 - 3.1 The applicant/developer is responsible for the cost of necessary alterations to existing public utility mains, services or installations required by works in relation to the proposed development or any works required by condition(s) of this approval.
 - 3.2 All payments or bonds required to be made to the Council pursuant to any condition of this approval or the Adopted Infrastructure Charges Notice must be made prior to the endorsement of the plan of survey and at the rate applicable at the time of payment.
 - 3.3 The developer must relocate (in accordance with FNQROC standards) any services such as water, sewer, drainage, telecommunications and electricity that are not wholly located within the lots that are being created/serviced where required by the relevant authority, unless approved by Council's delegated officer.

- 3.4 Where utilities (such as sewers on non-standard alignments) traverse lots to service another lot, easements must be created in favour of Council for access and maintenance purposes. The developer is to pay all costs (including Council's legal expenses) to prepare and register the easement documents.
- 3.5 The applicant must provide a letter from any Concurrence Agencies confirming that their conditions have been complied with.
- 3.6 All works must be designed, constructed and carried out in accordance with FNQROC Development Manual requirements (as amended) and to the satisfaction of Council's delegated officer.
- 3.7 Flood Immunity
 - a) All allotments must have a minimum area of 2,000 square metres 300mm above the Q100 level.
 - b) Any relevant Operational Works applications will include a Q100 analysis for the subject land. The applicant/developer must provide a plan showing the extent of a 100 ARI year flood event certified by a RPEQ (Registered Professional Engineer of Queensland).
 - c) No filling is to occur below the 100 ARI flood level unless accompanied by evidence that filling below the 100 ARI level would not detrimentally impact upon upstream or downstream properties to the satisfaction of Council's delegated officer.
- 3.8 Bushfire Management

Firebreaks

Where new roads are not involved or it is impractical to use new roads as firebreaks, firebreaks are established that:-

- have a minimum cleared width of 6m;
- have a maximum gradient of 12.5%;
- are constructed and maintained to prevent erosion and provide continuous access for fire fighting vehicles;
- have vehicular access at each end or have suitable clear manoeuvring areas for the turning of emergency fire fighting vehicles;
- all internal roads are to include fire hydrants;
- are within an easement in favour of Council and the Queensland Fire and Rescue Service or road reserve; and
- Are provided in at least the following situations:

The required firebreaks will be established:

- Along the eastern boundary of proposed Lots 38 and 41;
- Within the unnamed road reserve, for the entire northern road frontage of Lots 32 and 37, immediately adjacent to the agricultural buffer required under Condition 4.11.
- Along the southern boundary of proposed Lots 62 and 65.

Building and Structures (Lots greater than 2,500m2)

- Are sited in location of lowest hazard within the lot;
- Achieve setbacks from hazardous vegetation of 1.5 times the predominant mature canopy tree height or 10 metres, whichever is the greater;
- Are 10 metres from any retained vegetation strips or small areas of vegetation;
- Are sited so that elements of the development least susceptible to fire are sited closest to the bushfire hazard.
- 3.9 Environmental Covenant

The applicant shall be responsible for the preparation and registration of a statutory covenant with Council pursuant to S97A of the Land Title Act for the purposes of native vegetation and habitat preservation including the preservation of native plants and natural features.

The covenant will be of a form that is acceptable to the Registrar of Titles and will apply to the area identified on Drawing No. 11/4743-Stages 3-6 (2B) as the Vegetation Corridor. The covenant location and the covenant document provisions will be to the satisfaction of Council's delegated officer.

The covenant agreement shall be signed by the registered owner prior to endorsement of the survey plan by Council and the signed covenant shall be jointly lodged for registration with the survey plan, in the Department of Environment and Resource Management.

The covenant shall require the registered owners of the site to obtain approval of the Council prior to undertaking any earthworks, clearing of vegetation, fencing or placement of water pumps and pipelines within or across the area of the Covenant. The placement of effluent waste disposal systems, building of structures and cultivation shall be specifically excluded from within the area of the Covenant. The maintenance of the area of the Covenant shall be the responsibility of the owner of the land.

Each Covenant must stipulate:-

- (i) that it is for the express purpose of vegetation and habitat preservation, including the preservation of native plants and the natural features of the lot (including the water in Unnamed Creek and the soil contained in the covenant area).
- (ii) that no building, fixtures, infrastructure or improvements over the Covenant Area shall be permitted, including water pipes and pumps;
- (iii) Any maintenance required to be performed in respect of the Covenant Area shall be the responsibility of the lot owner.

The covenant shall be to the satisfaction of Council's delegated officer, and the applicant shall be responsible for the cost of preparation and registration of the Covenant.

3.10 Prior to the approval for any operational works for Stage 6, the subdivision layout will be amended so that the internal road network connects to the common boundary with Lot 219

on NR378 generally in the location of the road network shown on the approved plans as part of any further development of the adjoining Lot 219 on NR378 the configuration of proposed Lot 41 will be effected such that the road provides suitable geometry to the adjoining road network satisfactory of Council's delegated officer.

- 3.11 Stage 8 Requirements
 - a) Prior to lodgement of an application for Operational Works for Stage 8, the applicant will:
 - i) in addition to any other Stormwater Management Plan requirements, provide a conceptual stormwater design for the stage that details how any threats or impacts from upstream dams will be addressed;
 - ii) demonstrate, through that stormwater design, how stormwater flows that: originate outside the site, flow through the site, and discharge downstream of the site, will be suitably directed and contained.
 - iii) demonstrate how stormwater infrastructure will be incorporated into the lot design in accordance with the requirements of this approval;
 - iv) demonstrate how it is intended to maintain water quality within that storage in accordance with the requirements of Appendix 1 Parts A & C of State Planning Policy 4/10 Healthy Waterways.
 - v) demonstrate that suitable building platforms can be provided on proposed lots with slopes greater than 1:6.
 - vi) demonstrate that average lot size for the entire development exceeds 3000 sq m.

These requirements will be to the satisfaction of Council's delegated officer.

- b) The developer will prepare a management and operation plan for any artificial storage area within any proposed lot in accordance with Appendix 1 Part C of State Planning Policy 4/10 Healthy Waterways to the satisfaction of Council's delegated officer.
 - c) the registered owner of any lot containing an artificial storage area within any proposed lot will be responsible for the maintenance and operation of that storage area in accordance with the required management and operation plan.

3.11 3.12 Design Changes

- i) Prior to lodgement of an application for Operational Works for Stage 6, the developer will provide an amended layout plan for that stage which ensures that the connecting road to the eastern boundary is almost square to that boundary.
- ii) Prior to lodgement of an application for Operational Works for Stage 8, the developer will provide an amended layout plan for that stage which complies with the requirements of any other conditions of this approval.

These requirements will be to the satisfaction of Council's delegated officer.

3.12 3.13 Charges

All outstanding rates, charges and expenses pertaining to the land are to be paid in full.

4. Infrastructure Services and Standards

4.1 Access

Access must be constructed to each allotment in accordance with the FNQROC Development Manual, to the satisfaction of Council's delegated officer. The provision of Layback Kerbing along the total frontage of the proposed lots will satisfy this condition, except in the case of axe handle lots).

Where axe handle lots are proposed, a concrete or bitumen sealed driveway shall be provided within any access handles. The driveway will:

- Have a minimum width of 3 metres.
- Be constructed for the full length of the access handle.
- Be formed with one-way crossfall to cater for stormwater drainage such that any stormwater runoff is contained within the access strip.
- Service and utility conduits are to be provided for the full length of the sealed driveway constructed within the access handle of the battleaxe allotments.
- 4.2 Stormwater Drainage

The applicant must ensure a non-worsening effect on surrounding land as a consequence of the development and the applicant must take all necessary steps to achieve this including the following:

- a) The applicant must provide a Stormwater Management Plan prepared and certified by a RPEQ engineer that meets or exceeds the standards of design and construction set out in the Queensland Urban Development Manual (QUDM) and the Far North Queensland Regional Organisation of Councils Manual (FNQROC).
- b) The Stormwater Management Plan must include an erosion and sediment control plan that meets or exceeds the Soil Erosion and Sedimentation Control Guidelines (Institute of Engineers Australia 1996).
- c) The Stormwater Management Plan must provide for:
 - stormwater drainage from roofed and paved areas to be lawfully discharged to an approved drainage system within adjoining road reserves or where stormwater from roofed and paved areas cannot be drained into the approved drainage system within the adjoining road reserves, an inter-allotment drainage collection system must be provided;
 - (ii) overland flow paths and underground drainage is to be designed in accordance with water sensitive urban design solutions so as not to directly or indirectly cause nuisance or worsen peak flows to downstream or adjoining properties. The completed development discharge rate for a Q100 storm frequency must not exceed the pre-development discharge rates for a Q100 storm frequency;

- (iii) The assumed increase in stormwater runoff associated with the construction of future dwelling houses and driveways within the development must provide for an ARI 100 years overland flow through roads, open space areas or easements over adjoining properties. Construction of drainage must be to FNQROC standards;
- d) The Stormwater Management Plan must include a plan of the development showing the Q100 Flood Levels as well as a 2,000 square metre building envelope for each lot that is impacted by the Q100 Flow. The building envelopes must be above the Q100 Flood Levels.
- e) The applicant must prepare a Stormwater Report, including an assessment of blockages, prepared and certified by a suitably qualified design engineer (RPEQ) clearly indicating measures taken and calculated impacts based upon the Stormwater Management Plan in accordance with the Queensland Urban Development Manual (QUDM) and the Far North Queensland Regional Organisation of Councils Manual (FNQROC).
- f) All stormwater channels through private property must be located in a registered easement for drainage purposes, with the easement in favour of Council. Alternatively stormwater channels may be located with drainage reserves or other similar approved land tenure.
- g) The applicant must submit the Stormwater Management Plan and Stormwater Report to council as part of the operational works application for its approval.
- h) The applicant must construct the stormwater drainage infrastructure in accordance with the approved Stormwater Management Plan and Stormwater Report.
- i) Deleted
- j) Temporary drainage is to be provided and maintained during the construction phase of the development, discharged to a lawful point and not onto the construction site.
- k) The applicant (at its cost) must video all stormwater lines and submit the video for inspection by Council's delegated officer prior to the development being taken "off maintenance" to ensure that no defects have occurred during the 12 month maintenance period.
- I) A bond of 50% of the contract value of the drainage works must be lodged with Council during the 12 month maintenance period, as a guarantee for the satisfactory operation of the drainage works. The bond will be returned on satisfactory correction of any defective work after expiration of the maintenance period. During the maintenance period, Council may call up the bond and carry out any drainage repair work required.
- m) All stormwater channels through private property must be registered, with the easement for drainage purposes in favour of Council. All documentation leading to the registration of the easement must be completed at no cost to Council.
- 4.3 Prior to endorsement of the plan of survey creating the first lot of this development, the plan of survey/s for Stages 1, 2 and 7 (Development Approvals RC2005/56, RC2006/27 and REC/08/0110) of Country Road Estate must be registered.

4.4 Roadworks – Internal – <u>All Stages</u>

Internal roads must be constructed to Residential Street standard in accordance with FNQROC Development Manual standards (as amended) for the applicable planning scheme area to the satisfaction of Council's delegated officer.

A temporary turnaround area, with gravel surface, must be provided at the end of the new road construction adjacent to the balance area of the overall subdivision to allow traffic manoeuvring.

4.5 Water Supply

- 4.5.1 Where the existing reticulated water supply does not currently service the site or is not at an adequate capacity, the developer is required to extend the reticulated water supply infrastructure to connect the site to Council's existing infrastructure at a point that has sufficient capacity to service the development in accordance with FNQROC Development Manual standards (as amended).
- 4.5.2 The following reticulated water supply infrastructure upgrades must be undertaken by the developer:
 - (i) Prior to the issue of any Development Permit for operational works, the developer must enter into an infrastructure agreement requiring the developer to contribute per additional allotment created (currently \$487.00 per lot) towards the construction of the following water infrastructure upgrades:
 - A connection into the existing 375 mm diameter water main in Lloyd Street (at the corner of Constance Street). This connection must be a DN300 PN16 PVCO (or equivalent) pipe (Line A) to a point where the cross river boring commences (Line B).
 - The cross river pipe must be a PE DN400 (Line B) which is to be directionally drilled under the Barron River, flanged at each end and extended to the eastern side of the Hastie Road reserve; a flanged Tee must be provided to connect the cross river pipe to the DN300 pipe to the left and the DN200 pipe to the right at the outlet on the eastern side of the Hastie Road reserve.
 - From Line B, a DN200 PN16 PVCO (or equivalent) pipe (Line C) must extend to the current western end of the DN150 main on Hastie Road.
 - Installation of a PVC DN200 main (Line D) from the current eastern end of the DN150 main on Hastie Rd to the proposed water pump station within the Godfrey Road road reserve.

The amount of the contribution shall be adjusted on 30th June each financial year in accordance with the Consumer Price Index.

4.5.3 A water service connection must be provided to each proposed lot in accordance with FNQROC Development Manual standards (as amended) to the satisfaction of Council's delegated officer.

4.6 On-Site Wastewater Management

The applicant must provide a site and soil evaluation report (or an evaluation report where existing on-site disposal), prepared by an accredited site and soil evaluator, demonstrating the ability of the lots to accommodate an on-site effluent disposal in compliance with the latest version of On-Site Domestic Wastewater Management Standard (ASNZ1547) to the satisfaction of the Council's delegated officer.

4.7 Electricity provision/supply

The applicant/developer must ensure that an appropriate level of electricity supply is provided to each allotment in accordance with FNQROC Development Manual standards (as amended) to the satisfaction of Council's delegated officer.

Written advice from an Electricity Service Provider is to be provided to Council indicating that an agreement has been made for the provision of **<u>underground</u>** power reticulation.

4.8 Telecommunications

The applicant/developer must enter into an agreement with a telecommunication carrier to provide telecommunication services to each allotment and arrange provision of necessary conduits and enveloping pipes.

4.9 Lighting

Street lighting must be provided to all roads in accordance with FNQROC Development Manual requirements (as amended) and to the satisfaction of Council's delegated officer.

4.10 Street trees

One street tree must be provided in the nature strip of each lot created. The plan depicting species must be submitted to Council's delegated officer for approval. The street trees must be planted in accordance with the approved plan.

4.11 Agricultural Buffering

- (i) A 30 metre wide vegetation buffer, 20 metres planted and 10 metres clear on the southern side, is to be planted along northern road frontage of the following lots:
 - That part of the northern road frontage of Lot 31, extending from the DERM vegetation corridor, east to the boundary with Lot 32.
 - The entire northern road frontage of Lots 32 to 37.
- (ii) Appropriate native species will be used in the plantings. A landscaping/planting plan will be developed by a suitably qualified professional in compliance with SPP1/92 Planning Guidelines on Separating Agricultural and Residential Land Uses and must be endorsed by Council's delegated officer prior to any plantings being undertaken.

- (iii) The buffer vegetation will be established to a height of 4m on any relevant lot prior to Council signing the relevant plan of survey to the satisfaction of Council's delegated officer.
- (iv) The developer will maintain the buffer for two (2) years, and a bond of 50% of the contract value of the works must be lodged with Council during the maintenance period, as a guarantee. The bond will be returned on satisfactory correction of any defective work after expiration of the maintenance period. During the maintenance period, Council may call up the bond and carry out any work required. The bond will be lodged with Council to secure those works prior to Council signing the relevant plan of survey.
- (v) The applicant shall be responsible for the preparation and registration of a statutory covenant with Council pursuant to S97A of the Land Title Act for the purposes of establishment, protection and use of the land for a vegetated buffer over the required 30m buffer area.

The required covenant/s will be of a form that is acceptable to the Registrar of Titles and will contain provisions for:

- a management plan for the covenant area;
- protection of any vegetated buffer established as a result of this approval, including a requirement for cattle-proof fencing of the northern boundary of the vegetated buffer; and
- exclusion of buildings.

The covenant agreement shall be signed by the registered owner prior to signing of the relevant survey plan by Council and the signed covenant shall be jointly lodged for registration with the survey plan, in the Department of Environment and Resource Management.

The covenant location and the covenant document provisions will be to the satisfaction of Council's delegated officer. Maintenance of the area of the Covenant shall be the responsibility of the owner of the land.

The covenant shall be to the satisfaction of Council's delegated officer, and the applicant shall be responsible for the cost of preparation and registration of the Covenant.

4.12 Landscaping / Site Maintenance

The required buffer plantings shall be maintained as follows:

- replacement of plantings as required
- site maintenance shall include mowing / slashing of all areas outlined above
- landscaping / site maintenance is to be continued throughout the Defects Liability Period until date of Final Acceptance

Contrary to Section D9.23 Paragraph 7 of the FNQROC Manual, the maintenance period for irrigation works and landscaping shall be a minimum of twelve months.

At Council's Ordinary Meeting held on 20 June 2018, it was resolved to add Condition 4.13 to the extent below;

4.13 Roadworks - External Construction (Stage 8)

The intersection of Emerald End Road and the unnamed road servicing Stage 8 (as shown on Plan CRE-018-C01 dated 29/01/18) must be designed and constructed in accordance with the FNQROC Development Manual, to the satisfaction of Council's delegated officer.

The finished surface of the intersection is to be in asphalt, unless otherwise determined by Council's delegated officer.

<u>Prior to works commencing, plans for the works described above must be approved as part</u> of a subsequent application for operational works.

At Council's Ordinary Meeting held on 14 October 2020, it was resolved to add Condition 4.14 to the extent below;

4.14 External Works - Emerald End Road

Prior to Council endorsing a plan of survey creating any new lot under Development Approval REC/08/0096 (excluding Lot 26 of Stage 3), the following works must be completed to the satisfaction of Council's delegated officer:

- (i) (a) The applicant is to construct kerb and channel on Emerald End Road for the complete frontage of the subject land and also between the subject land and the intersection of Emerald End Road and Country Road.
 - (b) The applicant is to widen and extend the existing bitumen on Emerald End Road by two (2) metres for the complete frontage of the subject land and also between the subject land and the intersection of Emerald End Road and Country Road.
- (ii) Alternatively, in lieu of constructing the works required by Conditions 2(i)(a) and 2(i)(b), the applicant is to contribute to Council an amount equivalent to the construction cost of the following works:
 - (a) The construction of kerb and channel on Emerald End Road for the complete frontage of the subject land and also between the subject land and the intersection of Emerald End Road and Country Road.
 - (b) The widening and extension of the existing bitumen on Emerald End Road by two (2) metres for the complete frontage of the subject land and also between the subject land and the intersection of Emerald End Road and Country Road.

The applicable contribution shall be calculated based on the actual construction cost at the time of payment, to the satisfaction of Council's delegated officer. The construction cost shall be adjusted on 30 June each year in accordance with the Road Industry Construction Index.

(iii) The Intersection of Emerald End Road and Country Road is to be designed and constructed in accordance with the FNQROC Development Manual, as amended.

The main points to note from the manual are that the finished surface is to be in asphalt and the design is to be in accordance with NAASRA Part 5.

(iv) Prior to works commencing, plans for the abovementioned works must be approved as part of a subsequent application for operational works.

FNQROC Regional Development Manual

Section	Assessment
DP1 - Development Principles	Complies
AP1 - Application Procedures	Complies
D1 - Road Geometry	Complies
D2 - Site Regrading	Complies
D3 - Road Pavements	Complies
D4 - Stormwater Drainage	Complies
D5 - Stormwater Quality Management	Complies
D6 - Water Reticulation	Complies
D7 - Sewerage System	Complies
D8 - Utilities	Not part of current application
D9 - Landscaping	Not part of current application

REFERRALS

Nil

Internal Consultation

Technical Services

OFFICER'S RECOMMENDATION

1. That in relation to this operational works development application:

APP	LICATION		PREMISES
APPLICANT:	Conmat No 2 Pty Ltd	ADDRESS:	Emerald End Road and
	-		Country Road, Mareeba
DATE LODGED	12 February 2022	RPD:	Lot 200 on SP323217
TYPE OF	Development Permit		
APPROVAL	-		
PROPOSED	Operational Works (Ro	adworks, Earthv	works, Stormwater and Water
DEVELOPMENT	Reticulation for Stage 3	(11 Lots) of Deve	elopment Permit REC/08/0096)

and in accordance with the Planning Act 2016, as amended, the applicant be notified that the application for operational works:

Approved subject to the following assessment manager conditions:

(A) APPROVED DEVELOPMENT: Development Permit for Operational Works (Roadworks, Stormwater, Water Infrastructure, Drainage, Earthworks, & Sewerage Infrastructure) - **Stage 3**

(B) APPROVED PLANS:

Plan/Document Number	Plan/Document Title	Prepared by	Dated
CRE17-018-CO1	Cover Sheet	Benchmark Survey & Design	16/03/22
CRE17-018-CO2	Typical Cross Sections and Pavement Details	Benchmark Survey & Design	10/01/22

CRE17-018-CO3	Intersection & Cul-de-sac Details	Benchmark Survey & Design	10/01/22
CRE17-018-CO4	Setout Tables - Intersections and Cul-de-sacs	Benchmark Survey & Design	10/01/22
CRE17-018-CO5	Stormwater Drainage - Longitudinal Sections	Benchmark Survey & Design	10/01/22
CRE17-018-CO6	Stormwater Drainage - Calculations	Benchmark Survey & Design	10/01/22
CRE17-018-CO7	Water Reticulation Notes	Benchmark Survey & Design	10/01/22
CRE17-018-CO8	Site Plan	Benchmark Survey & Design	10/01/22
CRE17-018-CO9	Layout Plan	Benchmark Survey & Design	16/03/22
CRE17-018-C10	Country Road Longitudinal Section	Benchmark Survey & Design	16/03/22
CRE17-018-C11	Country Road Cross Sections - Ch47.9 To Ch180.00	Benchmark Survey & Design	10/01/22
CRE17-018-C12	Country Road Cross Sections - Ch184.031 To Ch292.922	Benchmark Survey & Design	10/01/22
CRE17-018-C13	Road 'A' Longitudinal Section	Benchmark Survey & Design	16/03/22
CRE17-018-C14	Road 'A' Cross Sections - Ch.16.291 to Ch.135.623	Benchmark Survey & Design	10/01/22
CRE17-018-C15	Road 'A' Cross Sections - Ch.140.00 to Ch.200.00	Benchmark Survey & Design	10/01/22
CRE17-018-C16	Stormwater Drainage - Layout Plan	Benchmark Survey & Design	16/03/22
CRE17-018-C17	Water Reticulation Plan	Benchmark Survey & Design	04/03/22
CRE17-018-C18	Erosion & Sediment Control Plan	Benchmark Survey & Design	16/03/22
CRE17-018-C65	Layout Plan	Benchmark Survey & Design	03/03/22
CRE17-018-C66	Typical Cross Sections and Pavement Details	Benchmark Survey & Design	02/03/22
CRE17-018-C67	Emerald End Road Widening - Longitudinal Section	Benchmark Survey & Design	10/05/20
CRE17-018-C68	Emerald End Road Widening - Cross Sections - 00 to 327.853	Benchmark Survey & Design	04/03/22
CRE17-018-C69	Erosion & Sediment Control Plan	Benchmark Survey & Design	10/05/20
CRE17-018-D1	Diagram 1 - 12.5m Austroads Rigid Vehicle Swept Paths	Benchmark Survey & Design	09/03/22
CRE17-018-D2	Diagram 2 - 12.5m Austroads Rigid Vehicle Swept Paths	Benchmark Survey & Design	09/03/22

(C) ASSESSMENT MANAGER'S CONDITIONS (COUNCIL)

(a) General

- (i) This development permit applies to Stage 3 of Country Road estate <u>only</u>, as depicted on Plan CRE17-018-CO1 (Cover Sheet) dated 16/03/22 as well as the widening of Emerald End Road.
- (ii) This condition is optional. Should the applicant/developer wish to upgrade/construct the section of Emerald End Road (frontage of Lot 1 on RP739487) between Chainage 00 and 51.035 marked as "To Be Constructed By Others" on Plan CRE17-018-C65 dated 03/03/22, Council will reimburse the applicant/developer for the full cost of upgrading this section of Emerald End Road conditional on Council's delegated officer signing off on a final quote for the works prior to commencement.

The applicant/developer may also wish to credit the cost of this section of works (as agreed to by Council's delegated officer) against any augmentation of the road network contributions payable for the 11 lots included in Stage 3.

- (iii) All operational works must be designed and constructed in accordance with the procedures as set out in the FNQROC Development Manual.
- (iv) Development must be carried out substantially in accordance with the approved plans and the facts and circumstances of the use as submitted with the application, and subject to any alterations:
 - found necessary by the Council's Delegated Officer at the time of examination of the engineering plans or during construction of the development because of particular engineering requirements;
 - to ensure the works comply in all respects with the requirements and procedures of the FNQROC Development Manual, Queensland Urban Drainage Manual and good engineering practice; and
 - to ensure compliance with the following conditions of approval.
- (v) Council's examination of the documents should not be taken to mean that the documents have been checked in detail and Council takes no responsibility for their accuracy. If during construction, inadequacies of the design are discovered, it is the responsibility of the Principal Consulting Engineer to resubmit amended plans to Council for approval and rectify works accordingly.

(b) Pre-start Meeting

(i) In addition to the requirements of Clause CP1.07 and CP1.08 of the FNQROC Development Manual; after documentation has been approved by Council, a pre-start meeting is to be held on site prior to the commencement of work. Part 1 of the **attached** pre-start meeting pro-forma is to be completed and returned prior to the meeting including clause 1.u 'Request for Meeting' together with the prescribed Construction Monitoring Fee as set out in Council's Schedule of Fees.

(c) Inspections

(i) Inspections are to be carried out as detailed in the FNQROC Manual unless advised otherwise at the pre-start meeting.

(d) Construction Security Bond and Defects Liability Bond

- (i) In addition to Clauses CP1.06 and CP1.20 of the FNQROC Development Manual; the Construction Security Bond and Defects Liability Bond shall each be a minimum of \$1000 and Bank Guarantees shall have no termination date.
- (ii) During the Defects Liability period, it is the responsibility of the developer to rectify any works found to be defective due to design faults and or found to exhibit faults attributed to the performance of the construction activities in terms of quality and conformance with design and specifications. The bond will be returned on satisfactory correction of any defective work and after expiration of the maintenance period. Failure to comply with a Council issued instruction to correct defective work may result in the call up of the bond to have the work completed.

(e) Hours of Work

- (i) Work involving the operation of construction plant and equipment of any description, shall only be carried out on site during the following times:
 - 7.00am to 6.00pm, Monday to Friday;
 - 7.00am to 1.00pm Saturdays;
 - No work is permitted on Sundays or Public Holidays.
- (ii) No variation to the above working hours is allowed unless otherwise agreed in writing by Council.

(f) Transportation of Soil

(i) All soil transported to or from the site must be covered to prevent dust or spillage during transport. If soil is tracked or spilt onto the road pavement from works on the subject land, it must be removed no later than at the end of each working day. Sediment must not enter Council's stormwater drainage network.

(D) RELEVANT PERIOD

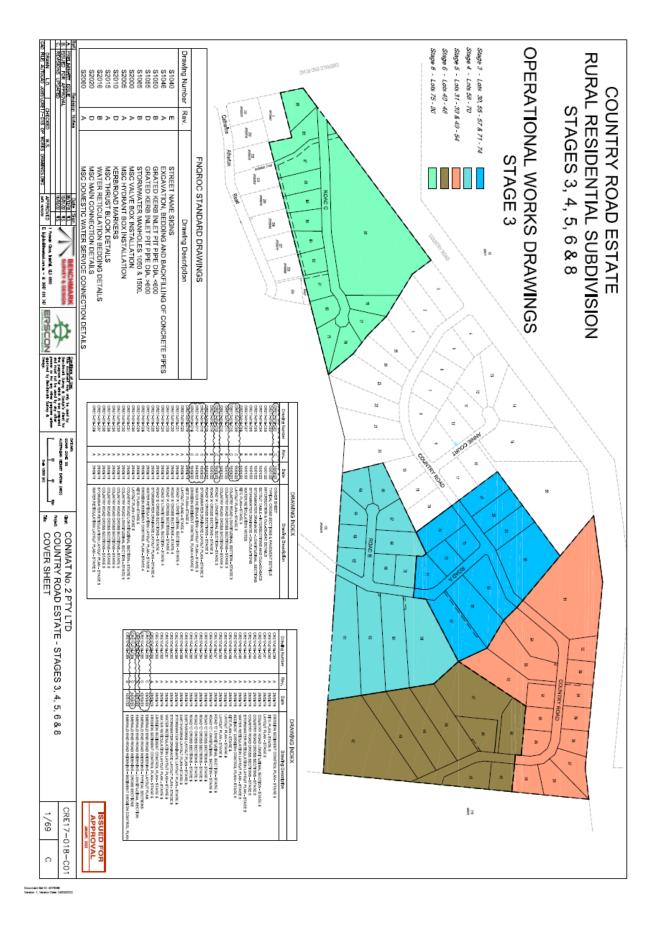
When approval lapses if development not started (s.85)

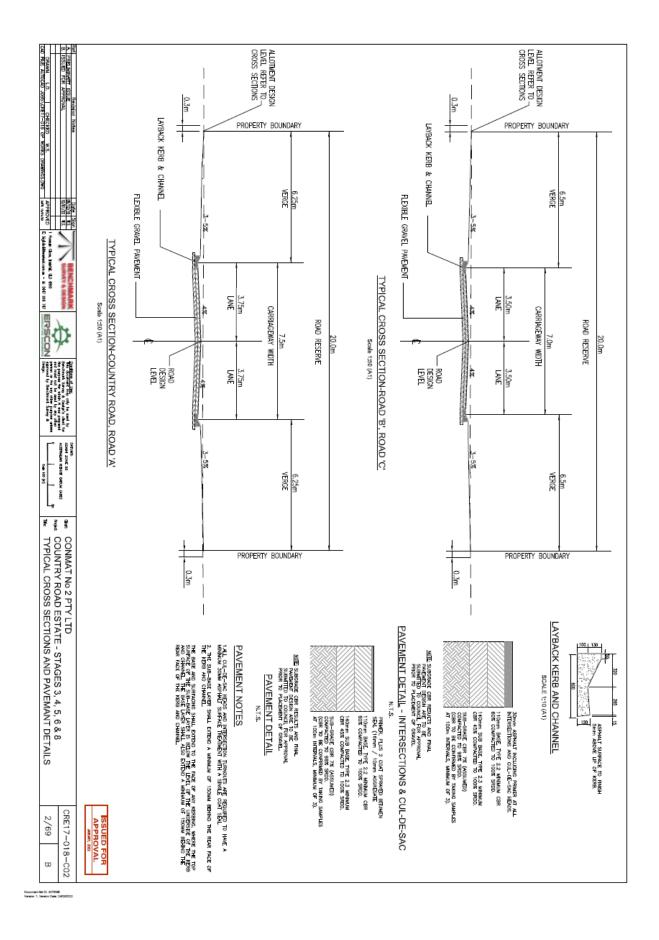
- Two (2) years (starting the day the approval takes effect).
- (E) OTHER NECESSARY DEVELOPMENT PERMITS AND/OR COMPLIANCE PERMITS
 - Nil

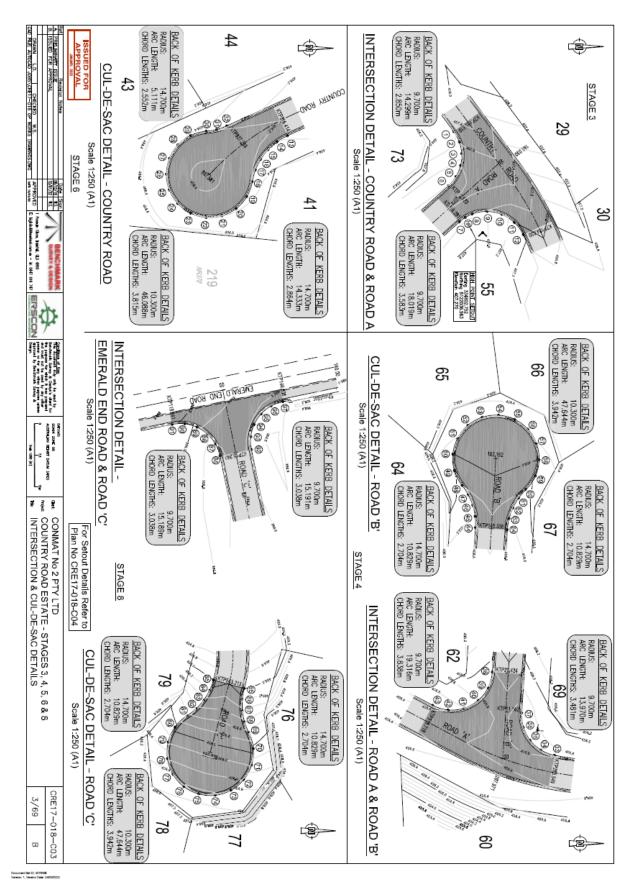
DECISION BY DELEGATE

DECISION

Having considered the Planning Officer's report detailed above, I approve, as delegate of Council, the application subject to the conditions listed in the report.


Dated the LITH day of APRIL 2022


23.0


BRIAN MILLARD SENIOR PLANNER

MAREEBA SHIRE AS DELEGATE OF THE COUNCIL

ATTACHMENT 1

 Rote
 Rote

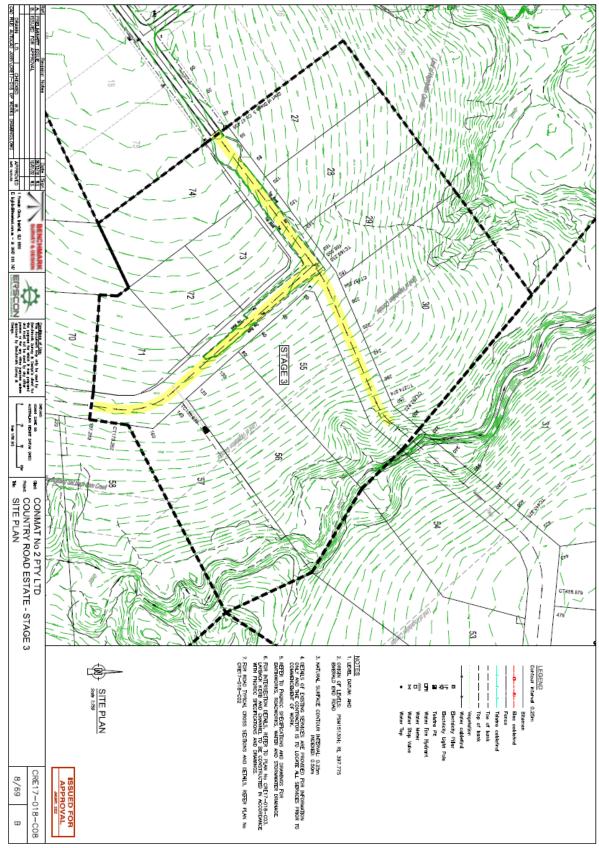
 A
 Rote
 Rote

 B
 Rote
 Rote
 Rote

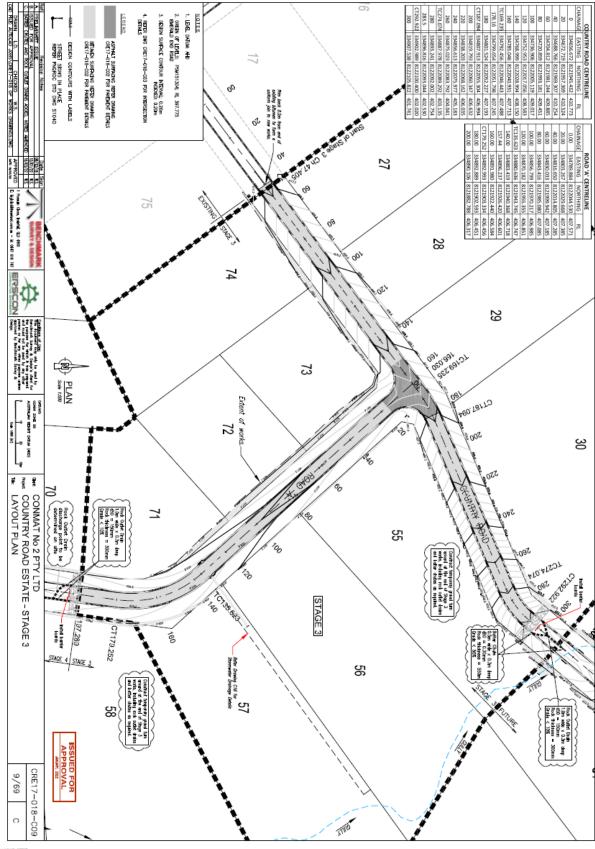
 Rote
 Rote
 Rote
 Rote
 Rote

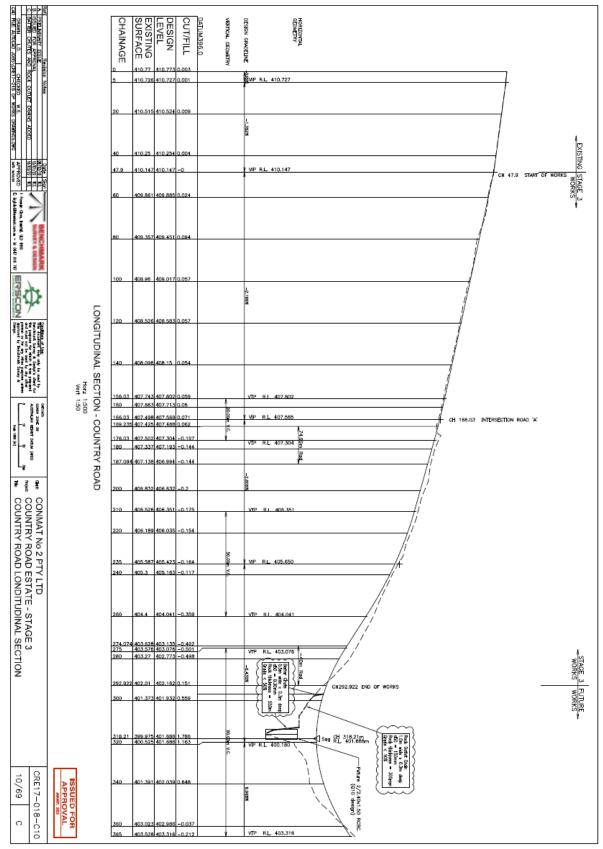
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote
 Rote

CRE17-018-C04			CONMAT No 2 PTY LTD	CON	Î	by and by cover cover on terms (etc)	The document may only be used by functional Survey & Design's close for		SURVEY & DESIGN	VIDITE SIGN VIDITE RS	107.65
						-					
		-		į	[408.952 409.032	8121786.584	334719.444 334715.947	48 49	
00	398.621	8121683.283	333754.418	97			408.892	8121789.897	334/21./03	4	STA
	398.665	8121680.454	333755.491	96			408.831	8121790.943	334724.196	46	GE 4
	300 601	0121070.434	222757 204	ņ 4			408.771	8121791.513	334726.839	45	
	398.698	81216/5.636	333/62.832	293			408.711	8121791.590	334729.541	_	AD
	398.083	81210/5.//8	333/03/000	28			405.495	8121769.411	334862.128	43	
	000.107	0121000010		3 6			405.534	8121773.089	334863.222	42	
	731 000	0121039.093	222750 277	9 9	ST/		405.598	8121776.903	334862.801	41	
	200.000	0121002.012	333750 740	3 0	GE		405.684	8121780.254	334860.930	40	
	200 070	C10 C331C10	222760 542	8	8		405.787	8121782.615	334857.905	39	
	398.874	8121665.339	333762.207	20 0	EM		405.904	8121783.614	334854.199		
	398 779	8101667 000	333764 560	20	ERA		405.628	8121790.687	334863.969	37	SEG
	308 683	8121668 207	333767 400	200			405.645	8121791.050	334870.466	36	TIC
	101 005	0121721 606	22/202 267	9 9			405.664	8121792.646	334867.381	35	DN
	405.390	8101730 654	334290.210	2 0			405.689	8121795.229	334872.790	34	
	402.007	0121/2/.400	177.767400	3 6			405.714	8121798.465	334874.052	33	
	405.527	8101707 ASS	224202 227	8			408.303	8121938.601	335277.361	32	
	400.040	8101705 215	22/202 22/	<u>8</u> 6	RO. DE-S		408.332	8121936.196	335278.214	31	
	406 046	0121720.011 0101700 AAO	22/206 502	ŝč			408.361	8121933.679	335278.637	30	
	406.294	8121720.811	334300 182	79			408.387	8121929.994	335279.639	29	STA
	406.489	8101700 640	334304 104	72			408.408	8121926.926	335281.912	28	GE
	406.628	8101701 061	334307 842	5			408.423	8121924.895	335285.14b	2/	6 C
	406.712	8121724 581	334310.793	76	ECT		408.432	8121924.179	335288.896	26	ou
	400.7 12	0101700 117	224212 EVE	i i	ION		408.436	8121924.876	335292.651	25	NTF
	400.020	0121722.010	204212000	7.7	DE		408.431	8121926.890	335295.895	24	RY R
	400.489	8121/38.842	334309.114	; ;	TAI		408.427	8121929.946	335298.184	23	OA
	406.294	8121/40./05	334305.635	1 2	LS		408,415	8121933.625	335299.206	22	D C
	406.046	8121741.126	334301.712	; 2			408.400	8121937.424	335298.819	21	UL-
	405.784	8121740.044	334297.917	69			408.380	8121940.822	335297.077	20	DE-
	405.587	8121739.047	334295.405	68			408.356	8121943.355	335294.219	19	SAC
	405.390	8121738.527	334292.752	67			408.329	8121944.674	335290.636	18	DE
	405.192	8121738.502	334290.049	66			408.303	8121945.422	335287.874	17	TAI
	404.996	8121738.974	334287.387	65			408.275	8121946.692	335285.309	16	LS
	408.711	8121799.214	334730.029	64			408.244	8121948.435	335283.039	15	
	408.771	8121799.634	334727.358	63	STA		408.210	8121950.586	335281.151	14	
	408.831	8121800.537	334724.810	62	GE		408.186	8121953,062	335279.715	13	
	408.892	8121801.892	334722.471	61			407.051	8122050,371	334806.860	12	STA
	408.952	8121803.653	334720.419	60			407.153	8122048.265	334803.962		
	409.032	8121805.911	334717.183	59			407.247	8122045.249	334802.028		
	409.112	8121806.789	334713.337	58			407.329	8122041.736	334801.324		
	409.191	8121806.160	334709.441	57			407.372	81220338.207	334801.947	20 .	
	406.251	8121804.114	334706.067	5	D B DE		407.374	8122032.303	334803.810	4 6	
	409.200	8121800 952	334703 707	л (Л 4			407.306	0122004.017	224705 220	n u	
	409.207	2121797.124	334703 707	л U 4 U	ERS		407.525	8122035.412	334790.410	n +	D &
	409.251	0121/09./04	334/05.130	5 22	EC		407.645	8122035.694	334/8/.5/4	. u	
	409.191	0121707.323	334706.230	5 2	тю		407.749	8122035.137	334/84./80	. N)AD
	409.112	8121786.204	334712.019	<u>u</u> 8	N		407.827	8122033.792	334782.268	ιι	A
	LEVEL	NOKIHING	EASTING	R			LEVEL	NORTHING	EASTING	NO	
			TACTINO	5						5	

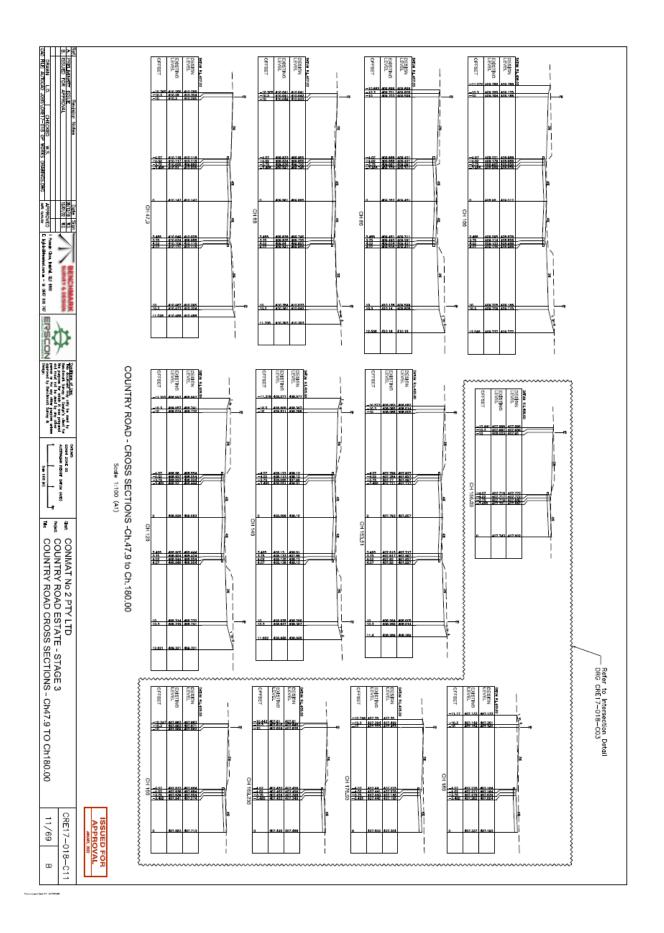

A PHELMINARY ISSUE B ISSUE FOR APPROVAL B ISSUE FOR APPROVAL DRAWN LD CHECKED CAD FILE AUTOCAD JOBS (CHET)-018 (20)	ISSUED FOR APPROVAL	LEVEL CHAINAGE	INVERT LEVEL	DEPTH TO INVERT	PIPE FLOW (Cumecs) PIPE CAPACITY AT GRADE (Cumecs)	DAT FULL VELOCITY (ma) DATUM RL H.G.L. IN PIPE & § W.S.E IN STRUCTURE	PIPE GRADE (%) PIPE SLOPE (1 h X) FULL PIPE VELOCITY (m%)	PIPE SIZE (mm) PIPE CLASS	NGL SHOWN TO GE (MM, ASP) UNLESS NOTED OTHERMISE			STRUCTURE DESCRIPTION	STRUCTURE
INED W.S.	7.00	0.000 398.14	7 397.194	0.953	0.057	387.533 60	su 200	- HA /	- B		_	FNGROC GUILY PTT (SAG) LARGE LINTEL (4.8m)	3/1
KS DRAWING	LINE 1	7.001 398.14	7 397.159 397.139	0.968	A 0.113	397.528				10 T		FNGROC GUILY PTT (SAG) LARGE LINTEL (4.5m)	2/1
SDWG		14.800 398.09 0.000 398.09	397.100	0.994 0.994	×α	397.348 397.348 398.868	~ 3ja	/	010 HOL -	SURFACE J	U	HEADWALL	1/1 2/2
AppRovED	20.762 LINE 2		397.500	0.552	2.557 2.548	398.033 Lo	9455 201722	2100-500	, A	R		HEADWALL	1/2
		0.000 398.74	397.400	0.613		307.879						ENDROC GULLY PIT (ON-GRADE) LARGE LINTEL (4.6m)	2/3
BENCHMARK I Frank Can Med. 42 498 E Nykullhumberna – X 047 18 76		7.000 398.74		1.042	0.094	398.323	5000 5000			R	= 1	ENGROC GULLY PIT (ON-GRADE) LARGE LINTEL (4.8m)	1/3
L 180 L 180	000 8.596	16.596 398.11		0.533	0.185	397.896	131.52 131.52		91			LARGE LIMTEL (4.Bm)	1/2
		0.000 401.71	397.580 6 401.110	0.533		397.896 402.670 401.936 (පූ			as Here			HEADWALL	4/4
		6.586 402.37	3 401.082 401.082	1.291	2,399 2,004	401.936 (20 No. 14 00 14 401.904 401.825	222		H		=\/	FNGROC GULLY PIT (DN-GRADE) LARGE LINTEL (4.8m)	3/4
Annual Property in	7.027 LINE 4	13.608 402.38	3 401.052 401.052	1.331	2,432	401.782	223 243	1800-00			- 1/4	FNGROC GULLY PIT (ON-GRADE) LARGE LINTEL (4.5m)	2/4
at ine stray of the sect to the sect to the any other the any other the any other	ONGIT	20.204 401.49	6 401.025 401.000	0.471	2.503	401.628	2.X	1500mE00	010 HSL		\square	HEADMALL	1/4
The destruct and the range of the stand by The destruct Strong & Ordge's duck for the property of the lower property and that not the stand by our dhar property of the stand by the property and the stand by Standard Strong 4.	UDIN/	0.000 404.48	404.006	0.474	2.203		1015		A	5		HENDWALL	4/5
-	Vert 1	6.449 405.21	3 403.941 403.941	1.352	2,819	405.014	2.00	1800,250				FNGROC GUILY PTT (SAG) LARGE LINTEL (4.5m)	3/5
	7.540 6.483 <u>INE 5</u> SECTION Horz 1:500 Vert 1:50		403.865	1,426	3.027	404.673	101X	0 1893/9750			N ⁺	Engroc Gully PIT (SAG) LARGE LINTEL (4.8m)	2/5
¥	COU	0.000 405.45	403,800	0.384		404.510 404.510 405.499	• •	<u></u>		_	Υ.	HEADWALL	1/5
북 종 등	438 5449 7546 5483 5487 LONGITUDINAL SECTION - COUNTRY ROAD Horz 1550 Vert 150		404.379	1.120	0.286	404.917 301.0		2023	П	$\left(\right)$		LARGE LINTEL (4.8m)	
STOR	ROAD	40.847 405.25	3 403.970 403.941	1.323		404.773 404.513			<u>16</u>			FNGROC GUILY PIT (SAG) LARCE LINTEL (4.5m)	3/5
CONMAT No 2 PTY LTD COUNTRY ROAD ESTA STORMWATER DRAINA	L. 3285	0.000 406.61	4 405.100	1.514 1.514	0.300	406.107 405.846 (3) 2) 5	114 114	~		-		ENGROC GULLY PIT (ON-GRADE) LARGE LINTEL (4.8m)	3/7
2 PTY ER DR	15 29.866 LINE 7	7.285 406.61	4 405.070 405.050	1.544 1.564	4 0.309	405.832 405.695	1 20 20 20 20 20 20 20 20 20 20 20 20 20		H	7		FNOROC GULLY PIT (ON-GRADE) LARGE LINTEL (4.8m)	2/7
AINAG	8	37.151 405.05	404.930	1.123 1.123	8 8	405.550 405.550 406.047	~ 894	ŗ	Ц	/		HEADWALL FINGROC GUILY PTT (SAG)	1/7 3/8
E ST/			404.975	1.072	0.105	405.955 LC	0.95 215.61	-		R		LARGE LINTEL (4.8m) FNGROC GUILY PTT (SAG)	2/8
NGES	8224 34,917 LINE 8	43.141 406.52	404.915 6 404.755	1.131	0.211	405.657	21823]	LARCE LINTEL (4.5m) Henowall	1/8
TE - STAGES 3, 4, 5, 6 & 8 AGE - LONGITUDINAL SECTIONS		0.000 407.20	404.755	1.771		405.150 407.208 407.004 (L2)				в		FNORIOC GUILY PIT (SAG) LARCE LINTEL (4.8m)	3/9
6 & 8 _ SECT	7.651 34.450 LINE <u>9</u>	7.651 407.33	9 405.915 405.895	1414	0.311	407.044	-		П	7		FNGROC GUILY PTT (SAG) LARGE LINTEL (4.8m)	2/9
rions	948	42.101 406.50	5 405.750 405.750	0.755	0.435	406.295 406.295	201 201	~#	Щ/			HEADWALL	1/9
	73	0.000 405.02	8 404.950	1.078	0.193	406.016 405.608 (3) (3) 2) (3)	2465		TT I	<u>\</u>		FNGROC GULLY PIT (ON-GRADE) LARGE LINTEL (4.5m)	3/10
5/	7.396 30.189 LINE 10	7.396 406.03	5 404.920 404.900	1.115	93 0.225	405.600				ſ	\	FNGROC GULLY PTT (ON-GRADE) LARGE LINTEL (4.8m)	2/10
CRE17-018- 5/69		37.585 405.38	404.770	0.618 0.518	et 55	405.240		18	410			HEADWALL	1/10 2/11
18-C05 B	24:09 LINE 11		399.600	0.027 0.122 0.122	13.100	400.701 La	1005	3900-1200		{		HEADWALL	1/11

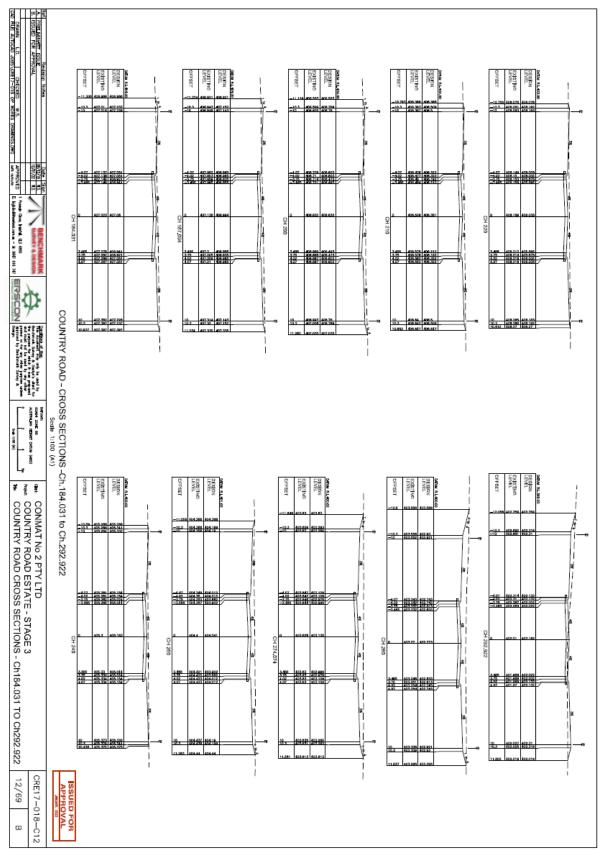
Document Sel ID: 407036 Version 1, Version Date: 34032022

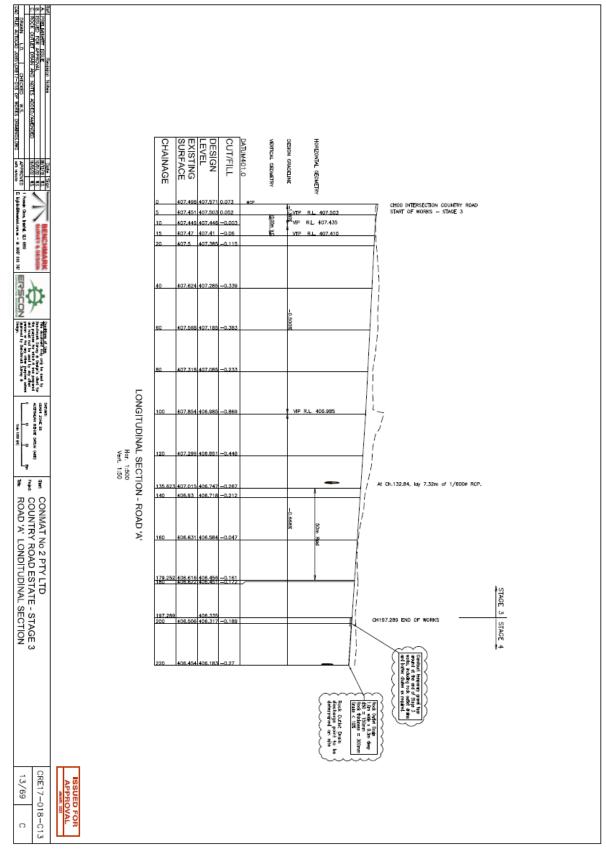

2 m>		5		5	5	5	5	u.	5		en .	54	5	5	5	U.	5	u.	9			- 1				5	5	5	L.	5	5	u	1	DESIGN A.R.L	_
MHHH		2	2	10	1/3	2/5	4/2	1/m	2/8	3/8	1/7	2/7	3/7	5/2	1/8	1/5	2/8	2/5	4/5	1/4		2/4	3/4	4/4	12	1/2	2/2	1/2	2/2	1/1	2/1	1/2	sueak.	STRUCTURE NO.	Н
NAD ANNALY SSIE BALMAD Nation ISSUED FOR APPROVAL DEMAN LD. CHEEVED W.S. REF AUTOOD 2005(DEEVED) W.S.				~				R.			7		1	³		er.				*											-			DRAIN SECTION	\square
D APPRI		-	10105	7/10 te 2/10 15	_	2/5 to 1/5 5	5/2 01.6/2		2/8 to 1/8 5	2/8 to 2/8 5		2/7 to 3/7 5	2/7 to 2/7 15		1/6 to 1/5 15		2/5 to 1/5 5	2/5 to 2/5 5	4/5 to 3/5 15	+	-	2/410		4/4 to 3/4 15	_	2/3 10	3/3 10		2/2 10		2/1 to 1/1 5	2/1 to 2/1 to	ni.	SUB-CATCHMENT TIME OF CONCENTRATION	1
OVAL C		3	11	114	_	171	114		171	171		171	114		114	-	171	171	114	+	1.5	1	5	114	_	171	171	-	114		171	171		RAINFALL INTENSITY	-
Notes 7-018		_		0.644		0.826	9		0.825	0.426		0.426	1 0.694		9		0.826	0.634	8 D.613	+		_		\$ 0.618					1 0.618		0.826	0.426	NUV.	COEFFICIENT OF RUNOFF	n
00 90		-	0	44 1.25	_	26 0.269	654 1.15		26 0.225	26 0.225		24 0.113	84 0.775		.644 2.14	-	26 0.234	26 0.104	13 5,46	+	10 0.4.5		9	5.00 81	_	0	.826 0.2	_	18 10.58		256 0.142	26 0.143	ta i	SUB-CATCHMENT AREA	>
99		-	000	0	_	-	0		0						24			0	6 5,85	+	-		9	÷.	_		0.42 0.2	-	a.		41 0.118		ŝ	TOTAL CONTRIBUTING	(Davi)
WWINOS		-		385 0.2	_	0	.826 0.2		186 0.0	1386 0.0		1093 0.0	0.538 0.17		377 0.4		0.192 0.0	.251 0.1		+	10.00	-		369 2.0	_		201 0.0		.789 2.1		18 0.056	DID MILLY	m3/s	EQUIVALENT AREA SUB-CATCHMENT DISCHARGE	5
DWC			037 0.037	255 0.27		105 0.105	261 0.2		380.0 380.	0.0 000		044 0.044	7 0.182		436 0.51		26010 2601	110 0.415	#52 L#	+				J016 2.016	_	_	560'0 59D'		145 2.1		56 0.057	456 0.057	/s m3/s	FLOW IN K & C [INCLUDING	ę
App Markey		_	37 0.67	7 0.67		5010 50	261 0.02		188 0.07			44 0.67	R2 0.67		1 2.83		192 0.22	15 0.28	.852	+	1.00	-	ð E	16		_	85 0.56	_	2.148		57 0.04	157 0.04	2/2	BYPASS) ROAD GRACE AT INLET	
Lote Sign 0/12/18 US 10/0/22 US APPROVED MC NAVIN		-	4	4	_	8	2		2			7 4	4		4		2	14 2-		+	-	× 1	ы р.	_	-	4	•	_	_		2	*	*	ROAD XFALL AT INLET	\vdash
m - 4 f		-	2	2	_							5	3.5							+	2	: 1		_	-	22	2	_	_				э	FLOW WIDTH	W
		_		4.493 0.1					0.0	0.0		.975 0.0	1.549 0.1		0.2		0.0	0,18		+	ton cor-		589 0.0	+	_	-	88	-	_		2	0.0	3	FLOW DEPTH AT INVERT	8
E				56	_				1.00%	0.00%		0.082 0.4	0.135 0.84		~		0.028	5		+	1.1	_	2067	\rightarrow			108 0.1	_	_		0.009	600.0	m/s	GUTTER FLOOD VELOCITY	ŝ
				0.855 0.1								0.402 0.0								_	the service	-	2.672	_			.702 D/	_	_				's m2/	VELOCITY-DEPTH	
BENCHMARK SURVEY & DESIGN Hert, 4D 199 Hert, 4D 199				NN 6ELV	e HV	SA	ŝų	e H	544	su	90	NA GHON	VIN EELV	SAL	54	eti HV	su	su.	NW	2	WH MAN		0.050 ALAD	inlet	_		5.076 AL	HW	ī I	9 HZ	Sec.	Se la	5/5	STRUCTURE TYPE	2A.2p
					HW	SAL4D	SAL4D	HW outlet	SAL4D	SALAD	outiet	ALAD 2X	AL4D 3X	541.40	SALAD SAG	HW	SAL4D	SALAD SAG	2 <	35. 주	WH WH			**		I		in V	a <	HW	40	SALAD	\parallel	INLET CAPACITY CURVE	Н
3 re				0.56,3. 3x 0.1		0.1	0.2		0.0	0.0		0.55,3. 2x 0.0	0.56,3. 2x 0.1	-	P		0.5		L.	+		-	XG,3.3	20			0.50,2. 3X	\neg	2		0.0	B	m3/s	FLOW INTO INLET	ß
		-	_	0.195 0.0		0.105 0	261 0		0380	0.000		0.044 0	167 0.015		214 0.3		0.092 0	0.415 0	,852 0	+	-		0.042 0	0 \$10	_	· .	294 0.0		148 0		0.057 0	0.057 0	/5 m3/	BVPASS FLOW	8
IZ /		_		0.074 1/6	_							2			2/5 3/5			2/5		+		24/2	2/2	_	-	_	1001 2/1	_	_				s/s	BYPASS STRUCTURE NO.	-
A DESCRIPTION OF THE OWNER OWNE		_		NS 15	_	5.	15		5.			2/10 5.	3/10 15		15		15		15	+	_	_		15	_		5	_	E .		5.06		nin	ONTICAL TIME OF	त
Since and		_	15.06 114	114		5.06 170	114		.07 170	171		5.0# 17D	114		114		15.12 114	15.05 114	114	_		_	15.05 114	116		506 170	12	_	114		26 170	171	n mm	CONCENTRATION RAINFALL INTENSITY	
Section of the sector response of the sector of the sector rest of the		_		0	_	0	0		0	9			14		P		2			+				9h			0	_	p.				m/hr ha	TOTAL CONTRIBUTING	6
A Case of the second se				805 0.		0 997	326 Q.		372 0.	186 0.		102 01	.076 Q.		277 0.		.V01 2.43	ANT 2.	25 L	_	1078		-	365 2.	_		201 0	_	785 2		.216 0.	LD MILL		EQUIVALENT AREA	(CAA) ()
			D	0.255 0	_	0.362	0.261		0.176 0.	0.088 0.		0.375 0.	0.34 0.		0,436 0.			2.346 0.	1.852	+	107 U.		2.044 0.34	2.016			0.260.0	_	2.148		0.112 0	0.056 0.	m3/s m	HALF ROAD CAPACITY	Qiat Qir
				288 0.	_	0	0		0.427 0	0.427 0		0.281 0.	0.288.0		0.254 0.		0.427 -0	0.427 -0	0	_	1	6 3 5 4	8	0	_		0.224 0.		0		0.427 -0	0.427 -0	m3/s mi	NET BYPASS FLOW	
E B				0.053 0.0		0	P		P	P		0.015 0.1	0.015 0.3		0.222 D.		-0.074 2.1	-0.074 2.4	e	+			2	M			0.001 0.1	_	M		-0.002 D.	10 100.0-	m3/s mb	FLOW IN PIPE	cia (nat Cio
90 - W 10				0.195 7.3	_	0.362 34	1261 7.4		2,176 34	LORE A.		0.354 29	0.325 7.2		0.214 40		2.504 6.4	441 7.5	,852 6,	+	201	_		015 6.3		· · ·	2.044 7	_	149 20		0.112 7.8	0.057 7.0	m3/s m	REACH LENGTH	-
L, §			a.	7.356 0.41		34.45 0.42	.651 0.46		34.917 0.46	8,224 0.49		29,865 0,4	7.285 0.41		40.847 0.5		6.462 0.4	1.54 0.44	6,449 0,47	+	This parts		_	585 0.43		5.556 0.52	0.71		782 0.48		2	7.001 0.5	*	PIPE GRADE	*
부골 및				450		525 21	525		16 275	15 275		600	11 500		525					+							275	I			275	375	m	PIPE / BOX CIMENSIONS	\square
		_	5 14	122		5 1.67	5 1.21		5 1.59	5		1.29	0 1.15		66.0		2403#5 00 1.74	2403e5 00 1.63	2402e6 90 1.29	+	5			1350.05 00 1.87			5 0.85		2103e5 00 1.71		E E	12.0	i) m (i	FULL-PIPE FLOW VELOCITY	<
CONMAT No 2 PTY LTC COUNTRY ROAD EST/ STORMWATER DRAIN		-	~	10	_	7 2	2		2	N		9 N	24		ф N		4 N	8 N	φ N	+	-		8 N	2	_	N	N N	_	R N		Б N	р N	s, wi	PIPE TRAVEL TIME VELOCITY	5
RMA		_	2	8	_	112	62		ವ	ន		7	18		8		11	đ	61	+	-		3	2	-	75	8		8		1	ន	5	120 Ku / Kw CHART IDENTIFIERS	\square
NATRO		-	T1/T3 1.52	2.37	_	13/16 1.81	2		72/76 2.25	2.47		11/13 1.13	62/T9/ T30 3,43		1.55		1.1	11/13 1.18	1.99	+	_	11/12 1 14	_	24		_	2.15		2.12	_	11/12 1.1	1.35	\square	SUBMERGENCE RATIO	S/De
RÃP		_	2016	5 H		1 0.29	н н		5 0.5	1		7 0.12	13 0.51		р. Ф		0.04	0.17	эр н	+		_	54 D. D. D.	дд 14		50	ы н		ы ц		8	а 1	\vdash	FLOW NATIO	I I
PE TY		-	5	_	_	1 65			рл. 10.			12	51 0.88				н К	5		+		. ,	8	\rightarrow	_		\rightarrow	_	_					DIAMETER RATIO	10 00/82
AINA		1	2	0		20	0.0		8	0.0		0.0	0		0.0		8	2	0.0	+	2	: :	2	2	_	2	2	-	8		0.0	50	э	VELOCITY HEAD	Du/De V2
Ê Ē		_	_	077 5.45	_	143 1.78	22.5 270		12 1.65	A12 5.02		QEM 1.02	J68 2.54		.05 7.06		154 0.37	347 1.28	J064 4,86	+	10.0		_	178 3.95	_		.017 5.75		148 4.54		.054 2.11	-FE 910	\vdash	U/S PRESSURE NEAD CHANGE	V2/28 Ks
-CA																	17 0.058		6 0.41	+							_						э	COEFFICIENT CHANGE IN U/S PRESSURE HEAD	Ŧ
CONMAT No 2 PTY LTD COUNTRY ROAD ESTATE - STAGES 3, 4, STORMWATER DRAINAGE - CALCULATI		_	0.135 1.64	0,415	_	0.254 2.15	352.0		3.254 1.97	0.164		0.086 1.14	0.172 2.89		3,353		158	0.188 1.47	5	+	47470	200	0.055	0.792		0.286 1.54	0.216		0.674		0.112	0.131	\vdash	W.S.E. COEFFICIENT	N.
ULA S				e			0.5			E					e		2		5	+	5		B	e			e	-	e		E	E	з	CHANGE IN W.S.E.	tw
D ATE - STAGES 3, 4, 5, 6 AGE - CALCULATIONS				0.419 0.47		12.0 905.0	35.0 352.0		0.156 1.01	0.164 0.25		0.096 0.15	0.195 0.28	-	0.952 0.95		0.058 -0.0	0.215 0.33	0.41 0.19	+	0.079 0.07		_	1.702 0.43	_		0.216 0.29		0.674 0.72		0.112 0.85	0.131 0.07	*	PIPE FRICTION SLOPE	*
SN SN			I										28 0.02		0		0.09 0.0			+							19 0.02						3	PIPE FRICTION TOTAL HEAD LOSS	z
20 CD				0.035 0.4		0.244 0.5	0.028 0.3		0.152 0.1	0.021 0.2		0.105 0.46	_		101 0.3		0.012 0.45	0.025 0.4	0,012 0,3	+	tion is conice			0.028 0.4		u,	-		ra 1900		0.044 0.2	0.005 0.1	э	DEPTH	9
				0.418 1.27		10	11 525.0		0.375 1.59	0.236 1.2		46 1.56	0.416 1.56		0.335 1.5		45 2.32	0.422 2.41	0.351 2.2	+	aria cuelo	_		6,483 2.32			1.217 1.42		0.435 2.41		0.282 1.27	0.178 1.1	s/vm	VELOCITY	N N
							52 40			121 5				-	52 5 40					+				_									т, П	PIPE U/S INVERT LEVEL	FI
				404.95 40		405.89 5 40/	405.55 5		404.91 40	404.97 5 5 5		405.05 40	405.1 40	\vdash	404.45 5 40		404.21 40	404.24	404.27 40 5 5 5	+		401.05 40		401.11 2			297.7 24		297.5 24		397.12 9 34	397,19	э	PIPE D/S INVERT LEVEL	\vdash
				404.92 7		405.75 9	405.91 40 5 1		404.75 40 5 2	404.93 40 5 6		404.93 5	405.07 2	\vdash	404.35 6		404.18 40	404.21 7	404.24 42 5 7	+		401.02 40	401.05 40	401.08 40			247.65 2	-	247.4 29 247.4 2		19 197.1 5	997,15 9	з	PIPE U/S H.G.L.	Н
CRE 6,			405,42	405.5 5 40 7 3		406.53 40	406,82 40 1 2		405.50 2 40	405.72 40 6 6 6		405,65 5 40	405.76 40 2 1	-	405.14 40 6 5		404.77	406.85 40 7 2	435.05 43	+		401.65 40	401.76 40	401.85 40	_	9 80.865	298.34 24 2 2	-	197.97 5 5		197.41 19 5 8	2 52/25	з	PIPE D/S H.G.L.	\square
/69	iSU:	-	405.74 8	405,56 40	5 p	406.25 40	408.75 40 5 8	8	405.15 8	405,71 40 6 1	8	405.55 1	405.74 40	∾ ¢	405.04 40 5 5	8	404.78 2	404.83 40 2 2 2	405,04 40 5 7		8,	401.62 40	401.73 40	401,82 40	* L 1	55 58'265	208.32 25 2 8	5.5	5 28'261	* 12	197.34 39 8 8 8	197.52 8 4		W.S.E.	Н
CRE17-018-	APPROVAL	405.24 8	405.58 40	405.01 40	406.25 40	405.84 40	407.20 40 8 2	405.15 6	405.75 40 8 5	405. 3 0 40 1 7	405.55 3	405.75 40 3. E	405. 3 5 40	2 405.07 40		404.78 5	404.82 40	405.07	405.46 7 1		401,62	401.72 40	401,92 40	402.55	197.85 10 6 2	359.32 35	2568.55 29 8 2	197.M2 39	158.64 15 5 4	197.34 39	197.52 2 7	397,66 39	3	SURFACE OR K & C INVERT LEVEL	Щ
B -C06	P 9	405.38	406.03 5 0.406	405.02	406.50	407 SE 104	407.20 2 0	405.52	405.04 6 0.3	405,04 7 0.1	50/507	105,60 20,205	405.52 6 0,4	05.23	405.49 5 0	405.59	405.28 2 0.4	605.23 0.3	105.60	402.71	_	402.38		402.67 0.1	2001	358.74	208.74	5 542.94	159.02	4 398.0 3	398.14 7 0.4	398.14 7 0.4	э	FREEBCARD	Ц
6		1	.445	0.012		,484			285	0,146		0.855	0,67				0,456	0.218	0,134		1000	100	1540	0.116	i	0,419	124		0.375		0.619	0.483			

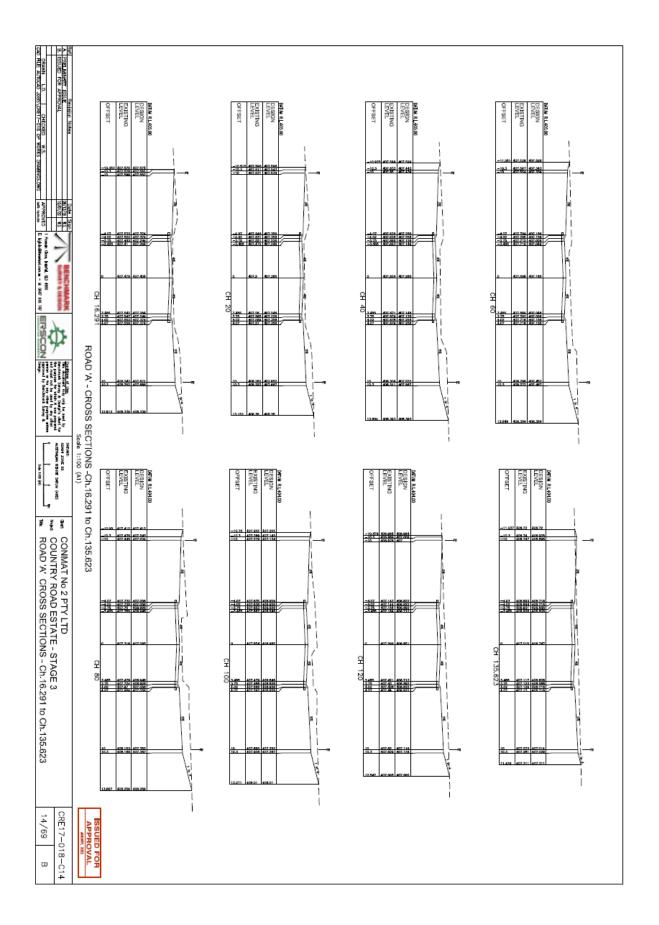

Document Set ID: 4071080 Version 1, Version Date: 34033002

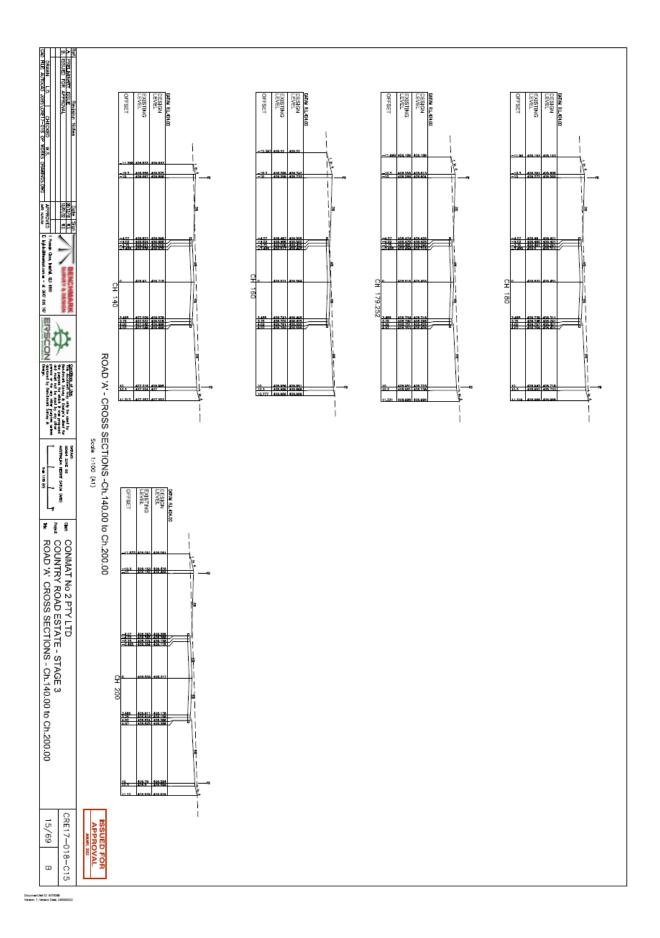
B, ISSUE DRAW) CAD FILE A	A PRELIV																														
UTICAD A	RELIVINARY ISSUE	W			100	25	24	23	22	21	20	19	18	17	16	ភ	14	13	12		10	6	00	7	σ	Б	4	Σ	2	1	REF
PROVAL CHEC	Revision Notes	- W -	8	192	122	Ţ	Ţ	Ţ	L	L	L	Ĺ	l	L	l	Ĺ	l	4	\exists	+	¥8	10057		∳₽	┝	╞	╞	╞	╞	F	CODE
I have been block to the III AN EPSCON	BILLING IS	Existing Water Main	m 630D: PE Pressure Pipe PE 100 Blue Stripe SDR11 PN16	Proposed Water Main 100¢ (Class 16)	rs-→ Proposed Water Main 150¢ (Class 16)	50 dia. D.I.C.L. Dead end cap with concrete thrust block.	100 dia. D.I.C.L. Dead end cap with concrete thrust block.	150 dia. D.I.C.L. Dead end cap with concrete thrust block.	50 dia. 90° bend with concrete thrust block.	100 dia. D.I.C.L. 90" bend with concrete thrust block.	100 dia. D.I.C.L 45' bend with concrete thrust block.	100 dia. D.I.C.L 22½ bend with concrete thrust block	100 dia. D.I.C.L 11% bend with concrete thrust block.	150 dia. D.I.C.L. 90° bend with concrete thrust block.	150 dia. D.I.C.L. 45" bend with concrete thrust block.	150 dia. D.I.C.L. 22½ bend with concrete thrust block	150 dia. D.I.C.L 11¼* bend with concrete thrust block.	50 dia. service fitting to 40 or 200 copper service to brass stop cock, meter & dirt box.	100 did. steel or bronze tapping band to 40 or 200 copper service to brass stop cock, meter & dirt box.	150 dia. steel or bronze tapping band to 40 or 200 copper service to brass stop cock, meter & dirt box.	IId. Gate Valve DR Brass complete with C.I. cover box margin and kerb marker.	100 dia. Sluice Valve Class 600 M.L. complete with C.I. cover box margin and kerb marker.		80 dia. Spring Hydrant "Maxi Flow" 2000 type (DN80) complete with D.I.C.L. Tee, Riser, C.I. cover box margin and kerb marker. (100 Main)	50 x 50 x 50 D.I.C.L. Tee with concrete thrust block.	100 x 100 x 50 D.I.C.L Tee with concrete thrust block.	100 x 100 x 100 D.I.C.L. Tee with concrete thrust block.	150 x 150 x 50 D.I.C.L. Tee with concrete thrust block.	150 x 150 x 100 D.I.C.L Tee with concrete thrust block.	150 x 150 x 150 D.I.C.L Tee with concrete thrust block.	DESCRIPTION
¥ ž	DATUMS 2045 25 Carl	- MSC	S20166 - WAL	Т	S2005A - MSC HYDRANT BOX IN S2010D - KERB/ROAD MARKERS	- 1	FNOROC DRAWINGS				ACHIEVE 38M RESIDUAL	11. PRESSURE AT EMERALD	10. RETICULATION MAINS TO	MAIN SHALL BE SERVICED	9. PROPERTIES LOCATED ON	8. PROVIDE WATER SERVICE	7. BENDING OF PE PIPES		6.	AROUND ALL HYDRANIS		5. WHERE NON-METALLIC PIPE		4		3 MINIMUM COVER TO ALL PIPES (TOP O	PIPELINE. THE TEST PRESSURE SHALL	2. WATER RETICULATION TO BE AFTER LAYING AND BEFORE		1 WATER SUBDLY DRESSURE DIDES TO CO	WATER RETICULATION NOTES
COUNTRY ROAD ESTATE - STAGES 3, 4, 5, 6 & 8 WATER RETICULATION NOTES	CONMAT No 2 PTY LTD	WATER SERVICE CONNECTION DETAILS	A REFICULATION BEDWING DETAILS	2	MSC HYDRANT BOX INSTALLATION KERB/ROAD MARKERS	VALVE BOX INSTALLATION					_ PRESSURE (RL473.00)	END ROAD	3 BE 100 or 150Dia (As Noted) PVC Series 2 MIN PN16	ED BY A 630D POLYETHYLENE LOOP PE100 BLUE STRIPE SDR11 PN16	ON THE OPPOSITE SIDE OF THE ROAD TO THE RETICULATION	E AND METER TO EACH PROPERTY.	IS PERMITTED. BENDING OF ALL OTHER PIPES IS NOT PERMITTED.		FOR MINIMUM BENDING RADIUS TO 630D POLTETHYLENE	AND SLUICE VALVES.	ABOVE THE	PIPE IS LAID A CONTINUOUS STAINLESS STEEL WIRE, 1.6mm DIAMETER		Þ	AFFICKED AREAS AND BOOMM IN TRAFFICKED AREAS.	I PIPES (TOP OF PIPE TO FINISHED SURFACE LEVEL) SHALL	RESSURE SHALL BE HELD FOR 15 MINUTES MIN. WITHOUT LOSS.	WATER RETICULATION TO BE HYDRAULICALLY PRESSURE TESTED TO 1250 KPA AFTER LAYING AND BEFORE BEING CONNECTED TO THE FXISTING COUNCIL		IRE DIDES TO COMDLY WITH AS1477	DTES
7/69 B	CRF17-018-007	APPROVAL ANNY, XXX	ISSUED FOR									WS TO		SDR11 PN16	Ň		RMITTED.				ED ONCE	1m DIAMETER			F	_	Loss.				

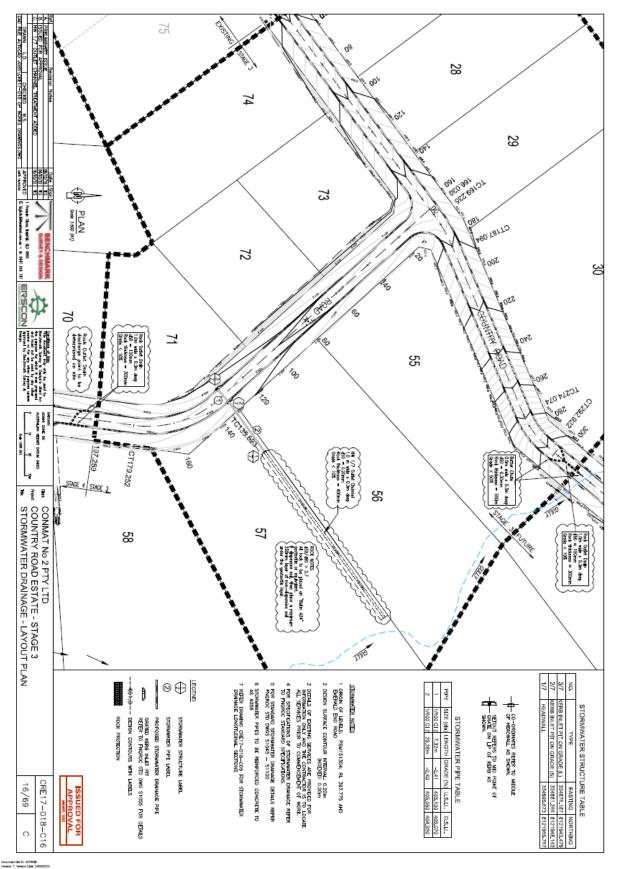


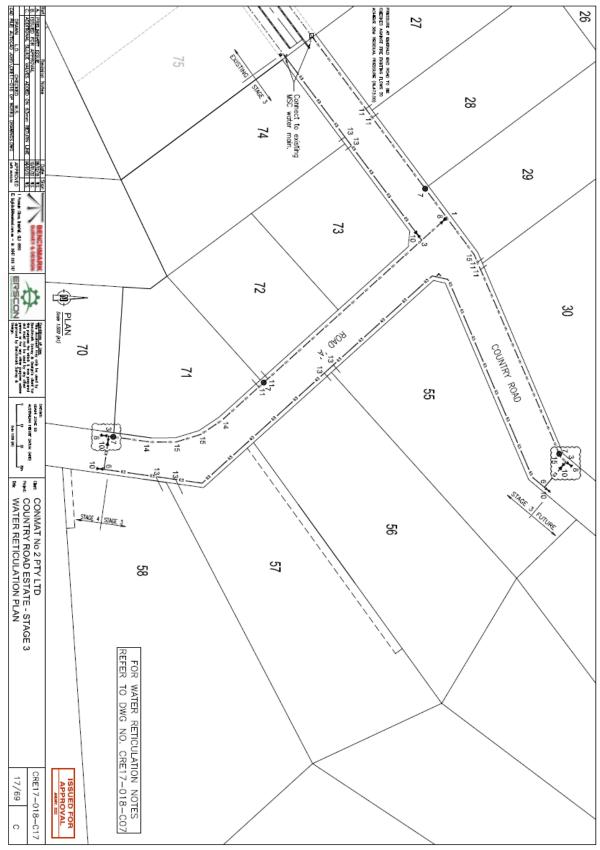

Dournet Set D. 427080

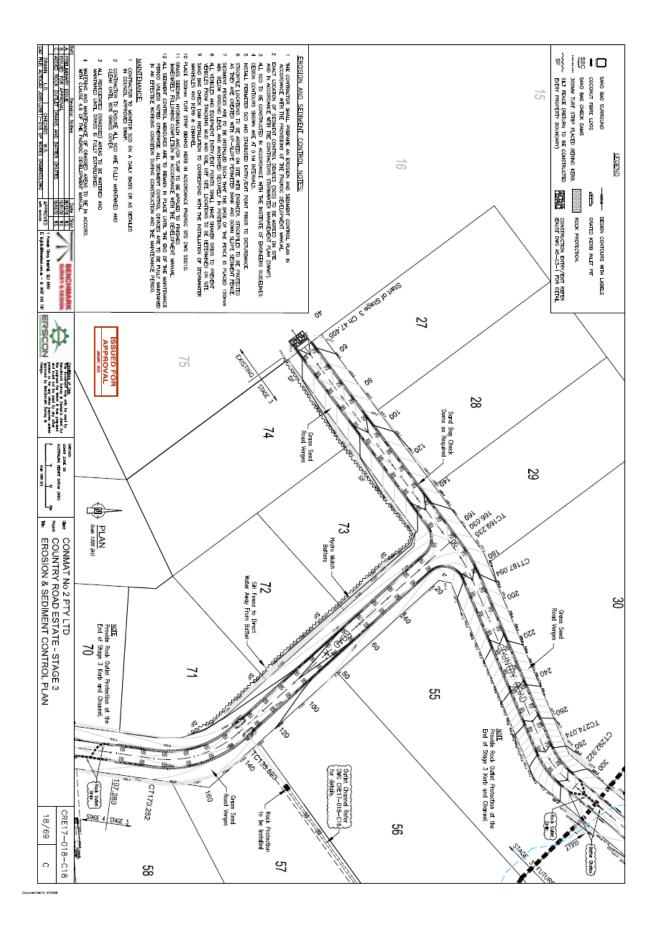


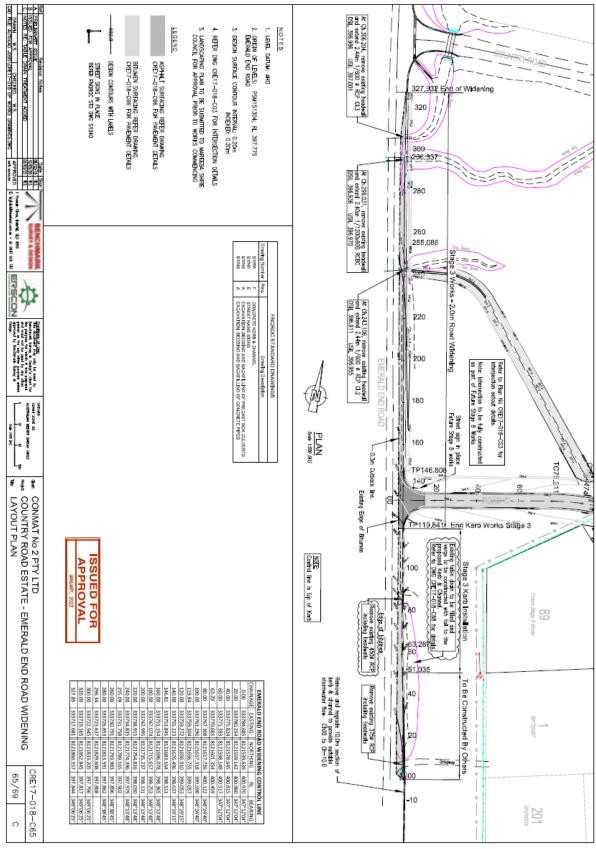




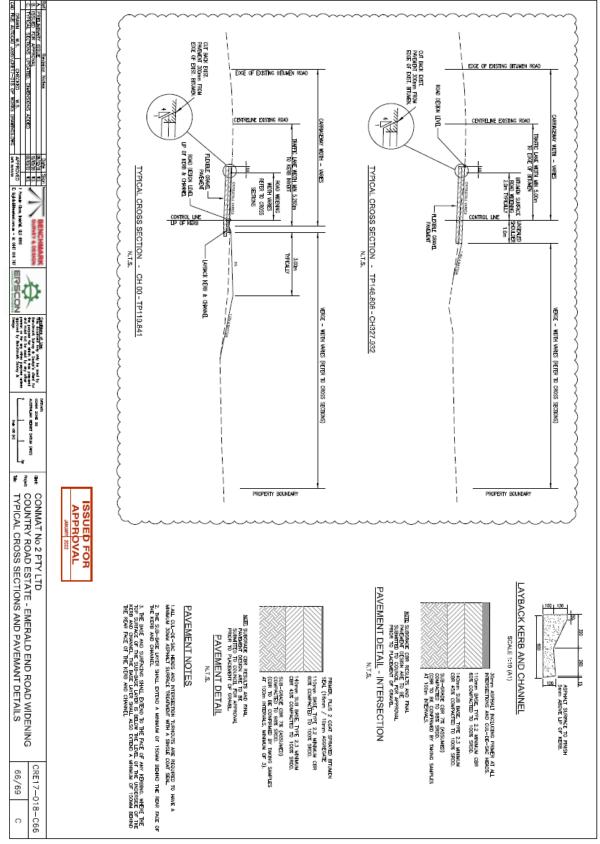




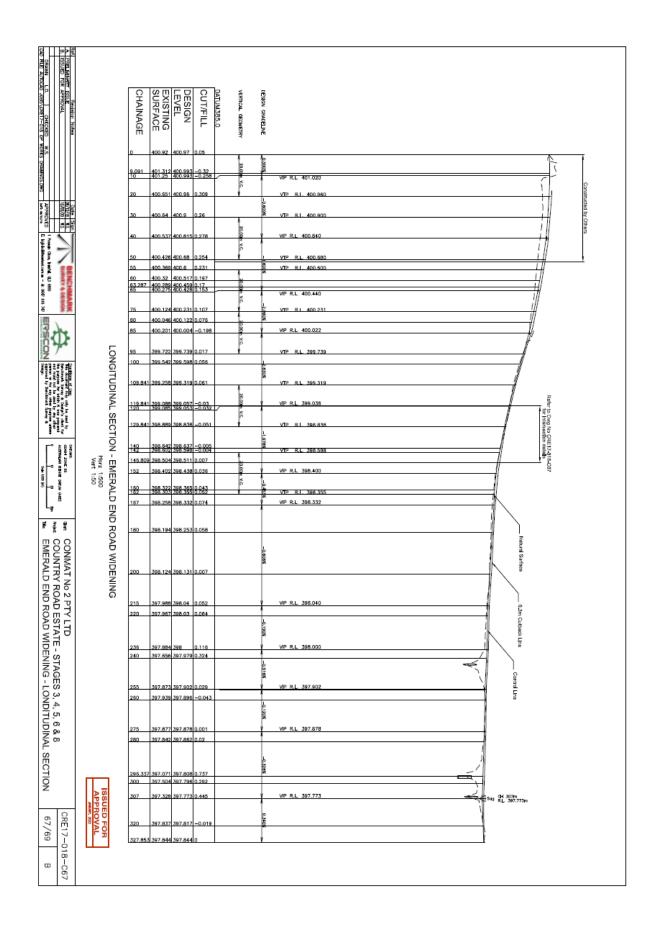


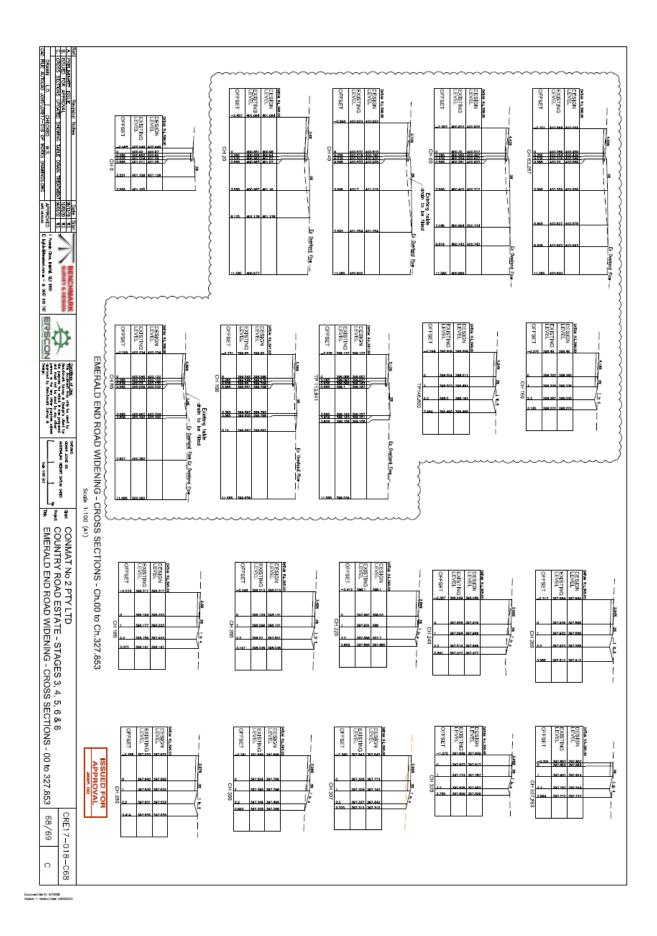


32

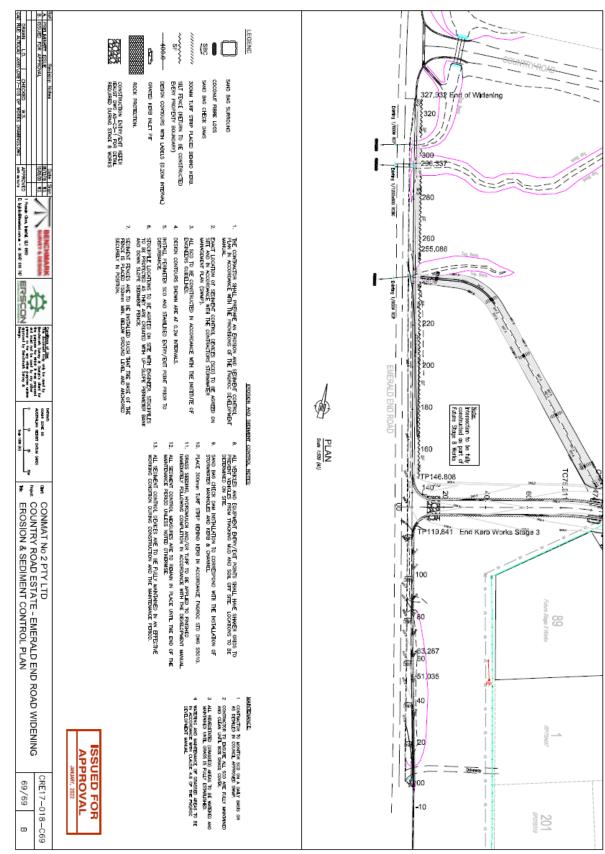


Document Set ID: 407036 Version 1, Version Date: 34033002

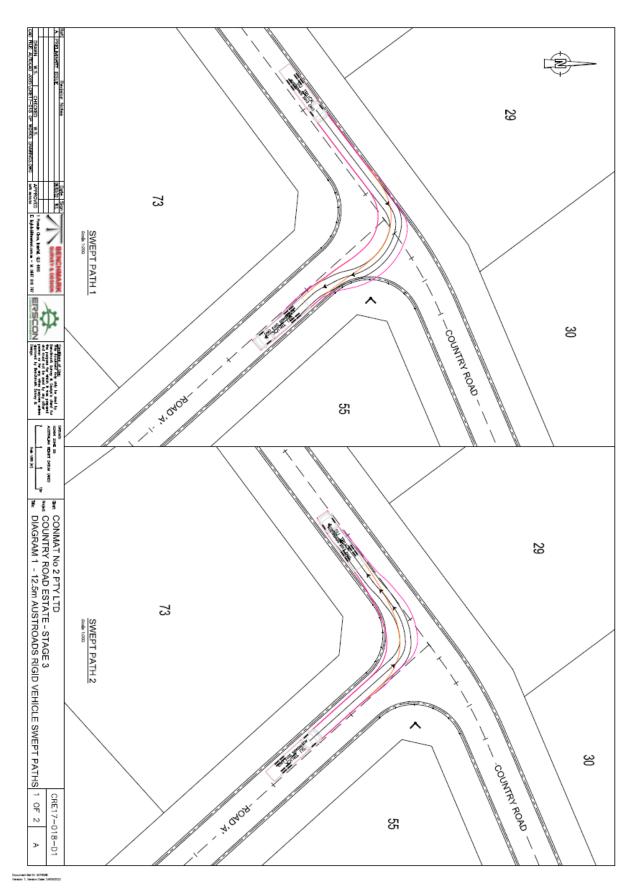


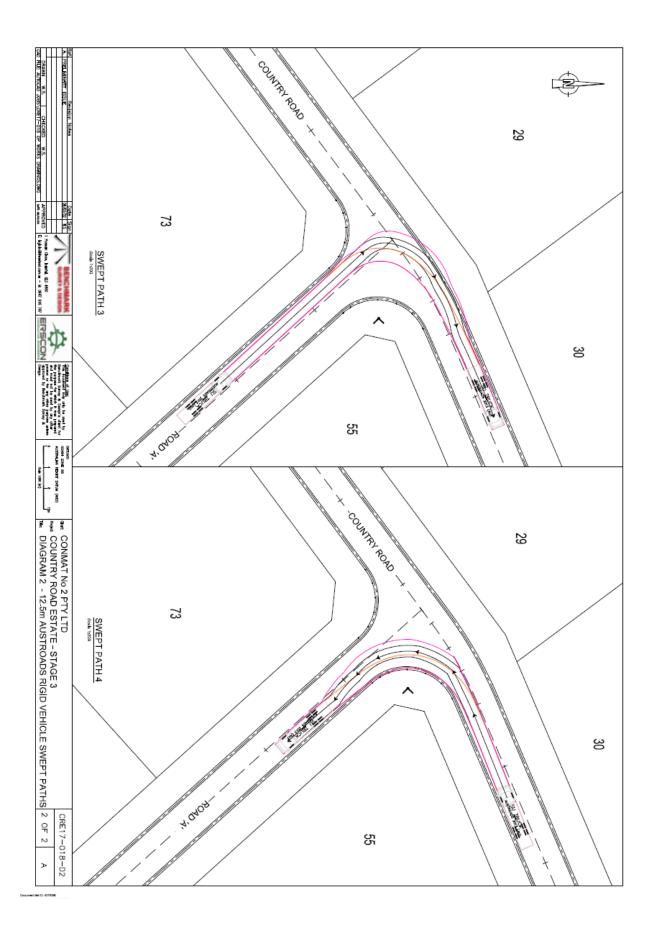


Desament Set ID: 4078345 Version 1, Version Date: 24/03/2022



Document Ref ID: 4071080 Version 1, Version Date: 34005002





Document Ref (D. 407508) Version 1, Version Date: 3453555

Document Set ID: 4116444 Version: 1, Version Date: 20/07/2022

