Your Ref: MCU/22/0002
Our Ref: F21/37

05 November, 2023

Chief Executive Officer

Attention: Carl Ewin
 Town Planning Department

Dear Sir,

RE: RESPONSE TO INFORMATION REQUEST
APPLICATION FOR A MATERIAL CHANGE OF USE - OUTDOOR SPORT AND RECREATION, FUNCTION FACILITY, EDUCATIONAL ESTABLSHMMENT AND TOURIST PARK LOT 66 ON RP896904, LOT 67 ON SP328197 AND LOT 68 ON SP282408, 545 KAY AND 483 EMERALD FALLS ROADS, MAREEBA. DEVELOPMENT APPLICATION MCU/22/0002.

I refer to the Mareeba Shire Council's Amended Confirmation Notice and subsequent Information Request letter dated 02 March, 2023. The following advices, in addition to those provided within the Development Application, are provided for your information in accordance with the Development Assessment Rules, 2017 supported by the Planning Act, 2016.

The current Development Application is for a Material Change of Use - Outdoor Sport and Recreation, Function Facility, Educational Establishment and Tourist Park. As a result of Investigations, discussions and additional Information (inclusive of professional Reports and advices) undertaken in relation to Council's Information Request, the Department's Information Request and the Department's Advice Notice, the Development Application has defined its Uses, numbers and the likes. This has resulted in Amending the Development Application to remove the Educational Establishment Use aspect of the proposal. This for the majority is in response to concerns, issues, revised clarity of Uses and the likes that have arisen when collating the Response to the Information Requests.

Information Request Item 1

Revised Plans

In order to provide clarity moving forward, particularly to the public during the public notification process, please provide a more detailed set of plans, prepared by a professional, addressing the entire development as well as each induvial Stage of the development.

Attached to this Response is an additional set of Proposal Plans addressing the components of the proposed development. It is worth noting that, originally, Lot 67 on SP328197 was included to be provided with NatureBased Tourism Uses over the site with any future of the Tourist Park able to be expanded within this site. However, recent developments, including the revised Staging to remove a number of Stages and reductions in aspects/scale of the proposal have resulted in the removal of any proposed Uses over existing Lot 67 on SP328197. As the Development Application and associated documentation from the Department of

Environmental and Science included this allotment, existing Lot 67 has remained part of this Development Application with no part of the development provided over this Allotment.

Further, the provision of Concept Drawings for the proposed Tourist Cabins are attached. These Plans have been provided in Concept only as Kanjini Co-Op Limited is looking into sustainable Cabin development and are looking to utilise sustainable building materials (air-crete, rock, hemp-crete, adobe, timber etc) in similar design to the attached Concepts.

The attached Additional Proposal Plans provided with this Response to the Information Request are as follows:

* Development Application Areas - Site Plan
* Event Site 1
* Event Site 2
* Tourist Cabin Site
* RV Sites

4 Layouts and Elevations
o Function Building Layout and Elevations
o Tourist Cabins Concept Drawings Layouts and Elevations
o Manager's Residence Layout and Elevations
Information Request Item 2

Traffic Impact Assessment

Please provide a Traffic Impact Assessment (TIA), prepared by an RPEQ, addressing anticipated traffic volumes and recommended upgrades (if any) on both Emerald Falls Road and Kay Road. The TIA should address each individual Stage of the development.

Attached to this Response is a Traffic Impact Assessment prepared by Civil Walker Consulting Engineers. It is understood that the Traffic Impact Assessment summaries that the existing Road Network is acceptable and appropriate for the proposed development. The Report does recommend 'that Council undertake a Site Inspection to determine if provision of additional road signage would be appropriate on the road to alert drivers of upcoming tight bends, road crests, causeways and other elements that may be unexpected. Consideration should also be given to whether trees close to the carriageway should be removed or if signage warning of the obstacle should be provided.' In relation to the proposed Outdoor Sport and Recreation and Function Facility, the Report notes that 'it is recommended that Council condition any approval associated large scale events as part of the development site (say, an event with 1,000 guests or more) with the requirement to provide an Event Traffic Management Plan to Council. It is noted that previous large events held at the site (with access via Emerald Falls Road) have provided a traffic management plan to Council. There have been no reported incidents associated with traffic at those events, with the road performing satisfactorily under the management plan.'

It is considered that the attached Report appropriately addresses Council's abovementioned Information Request Item.

Information Request Item 3

Ecological Assessment

The subject site is situated in proximity to a National Park as well as the Wet Tropics Area. Please provide an Ecological Assessment, prepared by a suitably qualified professional, demonstrating that the proposed development, in particular the Outdoor Sport and Recreation (events) component, will not have a detrimental impact on the fauna present in these ecologically significant areas. The ecological assessment should also address the Environmental significance overlay code where relevant to the site.

Freshwater Planning Pty Ltd have been provided with the following by the Kanjini Co-Op Limited in relation to mitigating any perceived detrimental impacts to Fauna with the proposed Outdoor Sport and Recreation (events) component. It is noted that Kanjini Co-Op Limited has deep environmental roots which is apparent with the existing Approval over the site in addition to all the Landcare Aspects undertaken and provided over the site.

Kanjini has hosted the Roots Festival three times now with up to 1,200 attendees, performers and staff. There has been no noticeable negative effect on the ecology, in fact several hundred native bushes and trees have been planted and cared for during and as a part of those events. Additionally, Kanjini does not envision events with more 1,500 guests to ensure that minimal impact, if any, is provided to the natural Flora and Fauna of the site.

Additionally, Kanjini is actively engaged in environmental land management, is a member of the Northern Bettong Recovery Team, practices Indigenous inspired fire management, hosts a Wildlife Sanctuary and cooperated with several scientists on various environmental research. Last and not least Kanjini Co-Op Ltd over the last ten years has returned significantly large areas of this property from cleared land to high value regrowth.

Kanjini has such a strong commitment to the environment that we do not allow any dogs or cats on over 99.9\% of our land (only exceptions are tenant's house yards) and we take a sizable security bond from all campers to ensure they look after country and leave no trace.

Large events are required to lodge large security bonds with us, and we are committed to ensure they too look after the country and leave no trace.

In addition, please see below the addressing of the relevant aspects of Environmental Significance Overlay Code.

Table 8.2.4.3A - Environmental significance overlay code - For self-assessable and assessable development

Note—Refer to Ecological corridors identified on SFM001-009 in consideration of wildlife connectivity at a regional scale.

PO2

Development on sites adjacent to areas of 'Regulated vegetation' identified on the Environmental Significance Overlay Maps (OM-004a-o) protects the environmental significance of regulated vegetation and:
(a) does not interrupt, interfere, alter or otherwise impact on underlying natural ecosystem processes such as water quality,
hydrology, geomorphology and biophysical processes;
(b) does not negatively impact the movement of wildlife at a local or regional scale; and
(c) avoids noise, light, vibration or other edge affects, including weed and pest incursion on identified environmental values.
Note-A supporting Ecological Assessment Report is prepared in accordance with Planning Scheme Policy 2 - Ecological Assessment Reports.
Note—Refer to Ecological corridors identified on SFM001-009 in consideration of wildlife connectivity at a regional scale.

AO2

Development (excluding roads, earthworks, drainage infrastructure and underground infrastructure) is not located within 20 metres of 'Regulated vegetation' areas identified on the Environmental Significance Overlay Maps (OM-004a-o).

Regulated vegetation intersecting a watercourse

PO3

Vegetation clearing in areas mapped
as 'Regulated vegetation intersecting
a watercourse', identified as
'Waterway' and 'Waterway buffer' on
the Environmental Significance Waterway Overlay Maps (OM-004p-
z) is avoided unless wildlife interconnectivity between habitats is maintained or enhanced at a local and regional scale, to the extent that migration or normal movement of significant species between habitats or normal gene flow between populations is not inhibited.

[^0]Where within a 'Waterway buffer' on Environmental Significance Waterway Overlay Maps (OM-004p-z)

A03.1

A minimum setback in accordance with Table 8.2.4.3B is provided between development and the top of the high bank of a 'Waterway' identified on the Environmental Significance Waterway Overlay Maps (OM-004p-z). Where within a 'Waterway buffer' on Environmental Significance Waterway Overlay Maps (OM-004p-z)

A03.2

No clearing of native vegetation is undertaken within the minimum setback identified at AO3.1.

The proposal is for the extension to the existing Nature-Based Tourism Use, being the provision of a Tourist Park including Outdoor Sport and Recreation, and Function Facilities with limited clearing proposed (now Function Facility and Tourism Cabins) over the 1,978 hectare site (Lots 66 \& 68). It is not considered that the proposal will affect the areas of Environmental Significance over the site. Any proposed clearing provided within the Mapped Regulated Vegetation will be minimal and minimised ensure not to adversely affect the majority of the Watercourses and Waterways provided over the site.

All interconnectivity will be maintained and enhanced with the proposed development. This is evident with the additional native vegetation being planted as a part of the Roots Festival. The

Information Request Item 4

> Bushfire Management Plan
> Development is proposed within the medium potential bushfire intensity area and potential impact buffer (100 metres).

Please provide a detailed Bushfire Hazard Management Plan, prepared by a suitably qualified professional demonstrating compliance with P01, P02, P04 and P08 of the Bushfire hazard overlay code.

The proposal development is for Environmentally Friendly Nature-Based Camping, RV's, Events and Cabin stays within the natural environment. The proposal can be provided with appropriate fire safety, setbacks and firebreaks where necessary. The provision of appropriately located water supplies can be Conditioned and provided with any Approval over the site. It is not considered that a Bushfire Hazard Management Plan is required at this stage in the Development Application process and can be Conditioned as a part of any Approval over the site. Any Bushfire Management Plan provided over the site will ensure to demonstrate compliance with abovementioned Performance Outcomes of the Bushfire Hazard Overlay Code.

Kanjini Co-Op Ltd would like to point out that 'a recent wildfire (in late October 2023) coming onto our land from Tinaroo Creek Road was a fast moving raging hot fire until it encountered Kanjni's land. Due to over four years of Indigenous inspired mosaic burns and ongoing fire management in cooperation with Parks and Wildlife and Indigenous rangers, the wild fire and backburns conducted by QRFS on Kanjini land were surprisingly cool and slow on Kanjini land considering the extremely dry, hot and windy conditions, taking about a week to creep about 7 km uphill in eucalypt country'.

Below is further information provided in relation to the aforementioned Performance Outcomes, in lieu of the requested to be Conditioned Bushfire Management Plan.

Acceptable outcomes

For self-assessable and assessable development

Water supply for fire-fighting purposes

PO1

Development where within a 'Bushfire hazard area' and 'Potential impact buffer (100 metres)' identified on the Bushfire hazard overlay maps (OM-003a-o) maintains the safety of people and property by providing an adequate, accessible and reliable water supply for fire-fighting purposes which is safely located and has sufficient flow and pressure characteristics.

Note- A Bushfire hazard management plan must be prepared by suitably qualified persons in seeking to demonstrate compliance with the Performance outcome.

Where within a 'Bushfire hazard area' and 'Potential impact buffer (100 metres)' identified on the Bushfire hazard overlay maps (OM-003a-o) A01.1
Where in a reticulated water service area, the on-site water supply has flow and pressure characteristics of 10 litres a second at 200 kPa .

OR

A01.2

Where access to the reticulated water network is not available, a minimum on site water storage of 5,000 litres is provided that must comprise:
(a) a separate tank; or
(b) a reserve section in the bottom part of the main water supply tank; or
(c) a dam; or
(d) a swimming pool.

Note-Where a water tank is provided for firefighting purposes it is fitted with standard rural

The proposed development is provided with a number of on-site water supplies in the form of Dams and Watercourses.

The existing Dam is substantially greater than 5,000L in addition to the Watercourses.

The site also contains a 44,000L tank with cam-lock fitting, another 27,000L tank with cam-lock fitting, over ten $2^{\prime \prime}$ steel risers and gatevalves along 2.5 km of underground pipes, a 450ML lake, five smaller Dams and over 2.3 km of permanent emerald creek flowing through the subject site.

It is considered that an appropriate reliable level of water supply for firefighting purposes is provided onsite.

Performance outcomes	Acceptable outcomes	Comments
	fire brigade fittings and the tank is provided with a hardstand area for heavy vehicles.	
For assessable development		
Land use		
PO2 Development within a 'Bushfire hazard area' and 'Potential impact buffer (100 metres)' identified on the Bushfire hazard overlay maps (OM-003a-o) is appropriate to the bushfire hazard risk having regard to the: (a) the bushfire risk compatibility of development; (b) the vulnerability of and safety risk to persons associated with the use; and (c) consequences of bushfire in regard to impacts on essential infrastructure, buildings and structures. Note- A Bushfire hazard management plan must be prepared by suitably qualified persons in seeking to demonstrate compliance with the Performance outcome.	AO2 All buildings, structures, infrastructure and facilities associated with the following uses are located outside any area of the site located within a 'Bushfire hazard area' and a 'Potential impact buffer (100 metres)' identified on the Bushfire hazard overlay maps (OM-003a-o): (a) child care centre; or (b) community care centre; or (c) correctional facility; or (d) educational establishment; or (e) emergency services; or (f) hospital; or (g) hostel; or (h) residential care facility; or (i) retirement facility; or (j) shopping centre; or (k) tourist park; or (I) tourist attraction.	The location of the proposed Cabins, Function Facility and Caretaker's Residences have been meticulously chosen to ensure the most appropriate positioning in relation to the site, their function, and their Bushfire Hazard safety. All proposed elements of this development will have nearby roads or natural features serving as firebreaks. Kanjini Co-Op has a proven 4-5 year history of large-scale Indigenous inspired fire-management which also provides effective fuel-reduction, especially around critical infrastructure. Effective firebreaks and fuel-reduction burns have been established and approved by local fire authorities for the Kuranda Roots Festival which has been hosted for the last three years. It is considered that the position of these structures have been purposely selected to ensure the most appropriate location ensuring that an acceptable level of Bushfire Hazard safety is provided.
Firebreaks and access		
PO4 In a 'Bushfire hazard area' and 'Potential impact buffer (100 metres)' identified on the Bushfire hazard overlay maps (OM-003a-o), vehicular access is designed to mitigate against bushfire hazard by: (a) ensuring adequate access for firefighting and other emergency vehicles; (b) ensuring adequate access for the evacuation of residents and emergency personnel in an emergency situation, including alternative safe access routes should access in one direction be blocked in the event of a fire; and (c) providing for the separation of developed areas and adjacent bushland. Note-Where it is not practicable to provide firebreaks in accordance with A04.2 Fire Maintenance Trails are provided in accordance with the following: located as close as possible to the boundaries of the lot and the adjoining hazardous vegetation;	A04.1 In a 'Bushfire hazard area' and 'Potential impact buffer (100 metres)' identified on the Bushfire hazard overlay maps (OM-003a-o), roads are designed and constructed: (a) with a maximum gradient of 12.5\%; (b) to not use cul-de-sacs; and (c) a constructed road width and weather standard complying with Planning Scheme Policy 4 - FNQROC Regional Development Manual. A04.2 In a 'Bushfire hazard area' and 'Potential impact buffer (100 metres)' identified on the Bushfire hazard overlay maps (OM-003a-o), firebreaks are provided: (a) consisting of a perimeter road that separates lots from areas of bushfire hazard;	The proposal is provided over a Rural Allotment containing an area of 1,978 hectares (Lots 66 \& 68). Existing adequate access tracks are located over the site and utilised as a part of this development. It is considered that the proposed development provides appropriate access tracks adequate for firefighting and other emergency vehicles or has the ability to be appropriately accessed. Appropriate firebreaks and setbacks can be achieved over the site. Where possible the provision of Fire Maintenance Trails can be provided if required.

Performance outcomes

the minimum cleared width not less than 6 metres; the formed width is not less than 2.5 metres; the formed gradient is not greater than 15%; vehicular access is provided at both ends; passing bays and turning areas are provided for firefighting appliances located on public land.

Note- A Bushfire hazard management plan must be prepared by suitably qualified persons in seeking to demonstrate compliance with the Performance outcome.

Acceptable outcomes
(b) a minimum cleared width of 20 metre;
(c) a maximum gradient of 12.5%; and
(d) a constructed road width and weather standard complying with Planning Scheme Policy 4 FNQROC Regional Development Manual.

Comments

Private driveways

PO8

All premises located in a 'Bushfire hazard area' and a 'Potential impact buffer (100 metres)' identified on the Bushfire hazard overlay maps (OM-003a-o) are provided with vehicular access that enables safe evacuation for occupants and easy access by fire-fighting appliances.

Note- A Bushfire hazard management plan must be prepared by suitably qualified persons in seeking to demonstrate compliance with the Performance outcome.

A08

Private driveways:
(a) do not exceed a length of 60 metres from the street frontage;
(b) do not exceed a gradient of 12.5\%;
(c) have a minimum width of 3.5 metres;
(d) have a minimum vertical clearance of 4.8 metres;
(e) accommodate turning areas for fire-fighting appliances in accordance with the Queensland Fire and Emergency Services' Fire Hydrant and Vehicle Access Guidelines; and
(f) serve no more than three dwellings or buildings.

The proposal is provided over a Rural Allotment containing an area of 1,978 hectares (Lots 66 \& 68). Existing adequate access tracks are located over the site and utilised as a part of this development. It is considered that the proposed development provides appropriate access tracks adequate for firefighting and other emergency vehicles or has the ability to be appropriately accessed.

Information Request Item 5

Events, Functions and Educational Activities
Please amend the Town Planning Submission to clearly state that the number of persons nominated for "Events, Functions and Educational Activities" for each stage of the proposed development is on a per annum basis, and not per individual event, function or educational activity.

As noted on Page 1, as a result of Investigations, discussions and additional Information (inclusive of professional Reports and advices) undertaken in relation to Council's Information Request, the Department's Information Request and the Department's Advice Notice, the Development Application has defined its Uses, numbers and the likes. This has resulted in Amending the Development Application to remove the Educational Establishment Use aspect of the proposal.

Further, for additional clarity, Freshwater Planning Pty Ltd can clarify that the 'The Proposed Development' section of the Development Application nominates the Events and Functions are based upon a per annum figure and not per individual Event or Function. Attached to the Response to Information Request is a Proposed Events and Functions Letter as provided by Kanjini Co-Op Limited reaffirming this.

Freshwater Planning Pty Ltd can clarify that the 'The Proposed Development' section of the Development Application nominates the Events and Functions are based upon a per annum figure and not per individual Event or Function. Further, the proposed size of the Function Facility will not allow for more than 300 guests and the available space at both event sites will not allow for any more than 2,000 guests at any single event. Attached to the Response to Information Request is a Proposed Events and Functions Letter as provided by Kanjini Co-Op Limited reaffirming this. In addition to this, for further clarity, please see below:

Stage 1 - Tourist Park, Events (Outdoor Sport and Recreation)
Camping Areas - four (4) new sites - camps 15-18
RV/Caravan Area - five (5) new RV sites
Events (Outdoor Sport and Recreation) - up to 2,000 persons per annum (existing Lake-side Day Area and Camping Area 2 with no single event hosting more than 1,500 guests)
Manager's Residence
Additional Amenities (Toilets/Showers)

Stage 2 - Tourist Park, Events (Outdoor Sport and Recreation)

Camping Areas - two (2) additional new sites - camps 19-20
RV/Caravan Area - five (5) additional new RV sites
Tourist Cabin Area - three (3) new Cabins
Events (Outdoor Sport and Recreation) - up to 3,500 persons [+1,500] per annum (existing Lakeside Day Area and Camping Area 2 with no single event hosting more than 1,500 guests)
Additional Amenities (Toilets/Showers)

Stage 3 - Tourist Park, Events (Outdoor Sport and Recreation and Function Facility)

Tourist Cabin Area - five (5) additional new Cabins
Events (Outdoor Sport and Recreation) and Functions (Function Facility) - up to 6,000 persons [+2,500] per annum (existing Lakeside Day Area and Camping Area 2 with no single event hosting more than 2,000 guests)
Function Facility - This Building encompasses approximately $300 \mathrm{~m}^{2}$ and parking.

Stage 4 - Events (Outdoor Sport and Recreation and Function Facility)

Events (Outdoor Sport and Recreation) and Functions (Function Facility) - up to 12,000 persons [+6,000] per annum (existing Lakeside Day Area and Camping Area 2 with no single event hosting more than 2,000 guests)

The previous Educational Establishment Facility Building will now only be provided as a Function Facility within Stage 3 and will consist of an approximate building of $300 \mathrm{~m}^{2}$ and a Parking Area.

This completes this Response to the Information Request. Please do not hesitate to contact me, in the first instance, should you require further information in relation to the matter.

Matthew Andrejic FRESHWATER PLANNING PTY LTD

Proposed Event Site 1

The proposed Event Site 1 is at 438 Emerald Falls Road. There is some existing infrastructure, namely two ~70sqm covered decks, five toilets, five showers and two hand basins.
While it always will be the event organiser's responsibility to ensure the supply of sufficient facilities for their event, Kanjini might add more facilities in the future.

The Kuranda Roots Festival used this site in 2021, 2022 and 2023 with great success. Kuranda

Indigenous dances at Kuranda Roots festival Aboriginal elders were very happy to see this over 20 year old event to happen on country and without alcohol.

Event Site 1 - shaded areas are level areas available for event infrastructure and activities

The orange shaded main event area in above "Event-Site 1 Map" map provides about 1.2 Ha , shaded by large trees.

The yellow shaded area provides about 0.8 Ha for parking.
The purple and blue shaded areas would make about 3Ha of additional level areas available for parking, or other event infrastructure or activities.

Kanjini Co-Op intends to limit any event to about 1,500-2,000 guests to minimise any environmental impact and ensure a relaxed family atmosphere.

There is a helipad for emergencies and a separate registration area on our land about two kilometers up Emerald Falls Road (see below map).
This registration area features an over 500 m long loop road to avoid any cars lining up along Emerald Falls Road during registration.

Event Site 1 - showing registration area about 2 km up Emerald Falls Road and helipad

This festival layout has worked very well over the last three years and none of the neighbours within 3 km of this site had any issues with the minimal noise and traffic impacts.

Proposed Event Site 2

The proposed Event Site 2 is next to our 25 acre lake.
There is some existing infrastructure, namely three toilets, a hand basin, and an about 100 square meter tarp.
While it always will be the event organiser's responsibility to ensure the supply of sufficient facilities for their event, we might add more facilities in the future.

The five smaller yellow shaded areas in below map are level areas available for event purposes. They add up to about 2 Ha in size.
The larger blue shaded area in the bottom of the below map can provide another 2 Ha of level area for event purposes.

Four camp sites and the proposed function facility are within a short walk from this event site and could also be hired by the event organisers.

Event Site 2 - shaded areas are level areas available for event infrastructure and activities

Proposed Tourist-Cabins

The proposed Tourist Cabin site is utilising an about 2.5 Ha area on a ridge within walking distance of Emerald Creek.
The site was chosen because it is naturally already almost totally clear of trees.
The site is serviced by an existing 2WD gravel road.

We envision to build eight tourist cabins here and the vision is for each one to be built using unusual designs and materials.

Map of Tourist Cabins Site showing creek, roads, fire-break and setback lines

For example there
could be a round cabin or a curved one, an octagon or a hexagram, a free-form or spiral or a tower.
Materials used could be rock, mud, straw, air-crete or hemp-crete, some could have green roofs or one could be a hobbit cabin.

If we secure approval without too onerous conditions, we intend to invite architects and designers to come up with innovative and interesting designs.

We are hoping to attract southerners and overseas visitors to Mareeba Shire to experience spending a few days or weeks in such a totally different house, to get a feel for more sustainable living.

Tourist Cabin Site - Chosen because there is a large natural clearing already

Here a few concept drawings on what these tourist cabins may look like:

Proposed RV Site

We were told that the proposed RV site was used as a council quarry for road base a long time ago and then again by previous owners or lessees.
When we purchased the property, this area was badly eroded and with hardly any vegetation.
About four years ago we decided to arrest the erosion by shaping the area into five east-facing terraces, offering panoramic views of the mountains, including Kahlpahlim Rock, Bunda Badjigal (Turtle Rock), Mount Tiptree and Mount Haig.

Aerial view of terraces

Google-earth view of the area when we bought the property (orange lines are existing roads)

The lower four terraces are each about ten to twelve meters wide and about sixty meters long, while the top one is triangle shaped and about 800 square meters.

We envision only two to three RV sites on each terrace, with RVs parked in the middle of a terrace, allowing for other RVs to pass behind and still giving plenty of outdoor space on the eastern side of the RV to enjoy the views. Stage 1 of the proposed development will see 5 RV sites used, Stage 2 the other five.
RV's are totally self contained and do not require the provision of any services.
We believe that the location, the views and the numerous activities available on our property will make this a valuable tourist asset for the Mareeba area.

View from RV site

Proposed Events \& Functions

The development application includes two event sites and one function facility.

EVENTS:

The proposed Event
Site 1 is located at 438
Emerald Falls Road.
The proposed Event
Site 2 and Function Facility are located close

View over most of our property to each other near our 25 acre (10Ha) lake with access from 545 Kay road.

Both event sites are at least 1.2 km from the nearest neighbouring residence and 2.5 km away from each other.
Stage 1 of the development allows for a total of up to 2,000 guests per year to attend various Events and Functions.
Stage 2 of the development allows for up to 3,500 guests per year
Stage 3 of the development allows for up to 6,000 guests per year and the construction of the function facility
Stage 4 of the development allows for up to 12,000 guests per year

View of part of event site 1

These are very modest numbers. For example in stage 1 we can only have one medium sized event like Kuranda Roots and maybe half a dozen smaller functions or other events during a whole year, while stage 4 will allow us to have say four to five medium sized and a dozen smaller functions or other events during the year.

The proposed development is vary small scale considering the vast size of this property and the reason for this development application is not to make large amounts of money, but to share this amazing property with the wider community.

The availability of level areas and practicalities of both event sites is likely to limit the number of people attending any single event to no more than $\sim 1,000-2,000$ persons.

The establishment of the event sites does not require any clearing.
They already have some facilities and Kanjini Co-Op Ltd might add more facilities to the event sites in the future.

However it will always be the event organiser's responsibility to ensure the supply of sufficient services and facilities for their event (security, medic, traffic control, catering, insurance, stages, marquees, toilets, showers, power etc)

Views at event site 2
Kanjini Co-Op Ltd has already hosted the Kuranda Roots Festival in 2021, 2022 and 2023 with about 700-1,200 persons at the proposed event site 1.
These three-day festivals were very successful and without any major incidents and all attendees really enjoyed the beautiful location.

FUNCTIONS:

The proposed function facility will be limited to about 300-400 sqm in size and as such will not be able to accommodate more than 200-300 people (see attached concept drawings).

It is overlooking and within walking distance of our 25 acre lake and will offer a stunning backdrop to any marriage or other function.

It is located close to our main entry to ensure easy 2WD access and there is plenty of already cleared parking areas close-by.

View from proposed function facility site

The unique scenic location of these events and function sites have the potential to attract boutique events and functions to Mareeba Shire.
For example, we already had an inquiry from a major firm to fly their Sydney staff in for their Christmas function because of the unique scenery

Proposed Function Facility

South-East Elevation

Proposed Function Facility

South-West Elevation

-9mm PLYWOOD CLADDING INTERNALLY AND EXTERNALLY.

ROOF BATTENS TO BE $70 \times 35 \mathrm{~mm}$ @ 900 mm SPACING (600 mm SPACING FOR TOP AND BOTTOM ROWS).

CYCLONE SHUTTERS TO BE MADE FROM EITHER 75 mm TIMBER @ 450 mm \& 1350 mm SPACING OR FROM $75 \times 30 \times 0.9 \mathrm{~mm}$ GALVANISED WALL NOGGING. BOTH WILL BE COVERED WITH ROOFING IRON AND HINGED ABOVE WINDOWS/DOORS, SO THEY CAN BE EASILY LET DOWN AND LOCKED INTO PLACE WITH BARREL-BOLTS.
x x

UFL

$1: 100$

No.	Description	Date
1	Engineer Review	31.08 .16

Kay Road Caretaker House

Upper Floor Level

Project number	KC001			
Date	11.07 .15	A101		
Drawn by	C.H.			$1: 100$
Checked by	Checker			

CivilWalker

Kanjini Co-Op Ltd

Proposed Development at 483 Emerald Falls Road \& 545 Kay Road, Mareeba Traffic Impact Assessment

Prepared by:
consulting engineers

GLF Developments Pty Ltd t/a CivilWalker Consulting Engineers

ACN 139545387 ABN 84139545387

15 / 64-66 O'Brien Road
Trinity Park Qld 4879

Document Control

Revision	Date	Reason	Author
A	27.10 .23	Initial Issue	DJW
B	01.11 .23	Minor Adjustment	DJW
C	03.11 .23	Minor Adjustment	DJW

\qquad
\qquad

© 2023 GLF Developments Pty Ltd t/a CivilWalker Consulting Engineers

This document is and shall remain the property of CivilWalker Consulting Engineers. This document may only be used for the purposes for which it was commissioned in accordance with the Terms of Engagement. Unauthorised use of this document in any form whatsoever is prohibited.

This report has been prepared on behalf of and for the exclusive use of the Client and is subject to all provisions of the agreement between CivilWalker Consulting Engineers and the Client. CivilWalker Consulting Engineers accepts no liability or responsibility whatsoever for reliance upon this report by any third party.

Contents

1. Introduction 1
2. Existing Conditions 2
2.1 The Development Site 2
2.2 Emerald Falls Road 3
2.3 Kay Road 10
2.4 Traffic Volumes 18
2.5 Existing Road Requirements 19
3. Proposed Development 21
3.1 General 21
3.2 Traffic Generation 22
3.2.1 Existing Camp Site Generated Volumes 22
3.2.2 New Camp Site Generated Volumes 22
3.2.3 Cabin and Recreational Vehicle Generated Volumes 23
3.2.4 Special Event Traffic Generation 24
4. Impact Assessment and Proposed Mitigation 27
4.1 Normal Operation of Roads 27
4.2 Special Events 27
4.3 Pavement Impact 27
4.4 Kanjini Co-Op 29

Figures

Figure 1.1 Site Location
Figure 2.1 Site Layout
Figure $2.3 \quad$ Emerald Falls Road
Figure 2.3 Kay Road

Photographs

Photograph $2.1 \quad$ Emerald Falls Road Chainage 50
Photograph $2.2 \quad$ Emerald Falls Road Chainage 100
Photograph 2.3 Emerald Falls Road Chainage 400
Photograph 2.4 Emerald Falls Road Chainage 800
Photograph 2.5 Emerald Falls Road Chainage 1000
Photograph $2.6 \quad$ Emerald Falls Road Chainage 1600
Photograph 2.7 Emerald Falls Road Chainage 2150
Photograph 2.8 Emerald Falls Road Chainage 3000
Photograph 2.9 Emerald Falls Road Chainage 3400

Photograph 2.10
Photograph 2.11
Photograph 2.12
Photograph 2.13
Photograph 2.14
Photograph 2.15
Photograph 2.16
Photograph 2.17
Photograph 2.18
Photograph 2.19
Photograph 2.20
Photograph 2.21
Photograph 2.22
Photograph 2.23
Photograph 2.24
Photograph 2.25
Photograph 2.26
Photograph 2.27
Photograph 2.28
Photograph 2.29
Photograph 2.30
Photograph 2.31
Photograph 2.32

Tables

Table 3.1
Table 3.2
Table 4.3
Table 6.1

Appendices

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

Emerald Falls Road Chainage 3600
Emerald Falls Road Chainage 3850
Emerald Falls Road Chainage 3900
Emerald Falls Road Chainage 4200
Emerald Falls Road Chainage 4300
Emerald Falls Road Chainage 4450
Kay Road Chainage 100
Kay Road Chainage 350
Kay Road Chainage 550
Kay Road Chainage 1300
Kay Road Chainage 1550
Kay Road Chainage 1750
Kay Road Chainage 2100
Kay Road Chainage 2400
Kay Road Chainage 2550
Kay Road Chainage 3400
Kay Road Chainage 3600
Kay Road Chainage 3900
Kay Road Chainage 4200
Kay Road Chainage 4850
Kay Road Chainage 5250
Kay Road Chainage 5400
Kay Road Chainage 5500

Daily Traffic Generated by Normal Use Development (ie Excluding Large Events)
Traffic Generated by Large Event Use (Access Via Kay Road Only)
Risk Assessment
Traffic Impact Assessment Certification Components

CivilWalker Consulting Engineers' Drawings
Council Traffic Counts
Kajini Co-Op Vehicle Data
Extract from TMR Guideline "Event Traffic Management Design Guidelines"
Vehicle Axle Loading Configurations

1. Introduction

CivilWalker Consulting Engineers have been commissioned by Kanjini Co-Op Ltd (Kanjini) to prepare a traffic impact assessment report for their proposed development located at 483 Emerald Falls Road and 545 Kay Road, Mareeba. Kanjini applied for a material change of use for outdoor sport and recreation facilities, function facilities, and a tourist park to Mareeba Shire Council (Council) on 16 February 2023. In response to the application, Council made the following request:
"Traffic Impact Assessment
Please provide a Traffic Impact Assessment (TIA), prepared by an RPEQ, addressing anticipated traffic volumes and recommended upgrades (if any) on both Emerald Falls Road and Kay Road. The TIA should address each individual Stage of the development."

This report responds to that request.
The site is located at 483 Emerald Falls Road and 545 Kay Road, Mareeba (more formally described as Lot 66 on RP896904, Lot 67 on SP328197 and Lot 68 on SP282408). It is identified in Figure 1.1 below.

Figure 1.1 - Site Location (courtesy of Qld Globe)

2. Existing Conditions

2.1 The Development Site

The proposed development site consists of three irregular shaped allotments with a combined area of 2,820 hectares. It is bound by Emerald Falls Road, Kay Road, Adler Hills Road and National Park. The site is encumbered by an easement, which contains a 132 kV Powerlink high voltage transmission line.

Also known as "Emerald Creek Escape" the site currently contains 13 camping sites, a day use area around an existing 25 acre lake, day use areas along 3 km of Emerald Creek frontage, hiking tracks, mountain bike tracks and several other smaller dams. The site is open to the public for camping activities.

There are three differing type of camp areas on the site. Five "Emerald Creek Sites" (Camps 2, 5, 8, 9 and 10) which are on the Emerald Creek frontage, five "Lake / Billabong Camp Sites" (Camps 1, 3, 4, 11 and 14) which surround the 25 acre lake and three "Great Views Camp Sites" (Camps 6, 7 and 12) which are in various other locations throughout the site. All camp sites have toilet facilities available. Figure $\mathbf{2 . 1}$ below shows the site layout.

Figure 2.1 - Site Layout (courtesy of Emerald Escapes Camping Website)
The site also contains an existing farmhouse, a cottage, several sheds, and other amenities. Access is available via both Emerald Falls Road (only to Camp Site 2 and the manager's caravan) and Kay Road (balance of site areas).

2.2

Emerald Falls Road
A site inspection of Emerald Falls Road was undertaken by CivilWalker Consulting Engineers on 4 September 2023. Emerald Falls Road runs from its intersection with Henry Hannam Drive and Cobra Road to the Emerald Creek Falls days use area, a distance of approximately 4.8 km . Figure $\mathbf{2 . 2}$ below shows the location of Emerald Falls Road.

Figure 2.2 - Emerald Falls Road (courtesy of Queensland Globe)
There is no posted speed limit on Emerald Falls Road, and it has therefore been assumed that the standard state guidelines for assessing and posting speed limits on Council owned roads applies. There are two default speed limits, those being $50 \mathrm{~km} / \mathrm{hr}$ within built up residential areas and $100 \mathrm{~km} / \mathrm{hr}$ for roads in rural areas. It is noted that default speed limits are not typically signposted and still require drivers to adjust speed depending on road conditions. Emerald Falls Road has been assumed to have a speed limit of 100km/h.

Emerald Falls Road reserve varies in width along its length as follows:

- 40 m wide from Henry Hannam Drive intersection for approximately 1.18 km (near western boundary of 160 Emerald Falls Road (Lot 2 on SP235320).
- 30 m wide from the above location to the unformed Malone Road intersection, opposite Lot 1 SP177749 (between 160 and 228 Emerald Falls Road), a distance of approximately 0.84 km .
- 40 m wide from the above location for approximately 1.53 km (near western boundary of 160 Emerald Falls Road (Lot 2 on SP235320).
- It then widens considerably (up to 125 m wide) for a distance of approximately 0.2 km at the Wrights Lookout Access.
- 30 m wide from the Wrights Lookout Access to the Emerald Creek Falls car park area, a distance of approximately 1.05 km .

The road carriageway appears to locally wander outside the existing road reserve near the intersection with Henry Hannam Drive into Lot 589 NR4243, in which an existing dam is located. The road carriageway is un-sealed and has widths varying from approximately 6 m wide up to 7 m wide along its length.

An assessment of existing road geometry was also undertaken. This was prepared by mapping the existing horizontal alignment (courtesy Qld Globe) and obtaining Lidar data to assess vertical geometry along the mapped horizontal alignment. Reference is made to the drawings within Appendix A.

Drawing 250-001-SK01 details the adopted horizontal geometry and drawings 250-001-SK04 and SK05 detailed vertical geometry ascertained from the Lidar data. Existing horizontal curves vary in radius from 25 m to 500 m with a considerable amount of the curves in the 35 m to 50 m radius range. Existing vertical grades typically vary from 0.5% to up to a maximum of 11.7% with approximately 313 m of the 4.8 km long road (6.5%) estimated to have a vertical grade less than the desirable minimum of 0.5% (Austroads Guide to Rural Road Design).

The existing horizontal geometry does not meet current design standards (Austroads Guide to Rural Road Design), for the speed limit of $100 \mathrm{~km} / \mathrm{h}$ however, this is common for low traffic use / low speed environment rural roads. The Austroads Guide notes the following regarding rural roads:
"From observations of driver behaviour in hilly terrain, it was noted that drivers initially reduce speed over the first few curves until they reach a speed that is the highest at which the driver feels comfortable. The driver then tends to maintain this speed unless confronted with a curve with a radius significantly below the general range of radii on the section of road. Conversely, the driver will not increase speed unless a straight (or near straight) is available and is $>200 \mathrm{~m}$. On shorter straights drivers tend to maintain the speed attained on the preceding section of curves."

Austroads identifies three type of rural road speeds being high speed roads, intermediate speed roads and low speed roads. Based on the road geometry assessment undertaken, Emerald Falls Road considered a low speed road:
"...roads having many curves with radii less than 150m. Operating speeds on the curves may vary from $50 \mathrm{~km} / \mathrm{h}$ to $70 \mathrm{~km} / \mathrm{h} . . . "$
"... the alignments provided in these circumstances could be expected to produce a high degree of driver alertness, so those lower standards are both expected and acceptable."

Whilst the default speed limit may be $100 \mathrm{~km} / \mathrm{h}$, Austroads notes that road design elements are not required to be design for this speed and that rural roads do tend to have a lower operating speed.

It is noted that this report does not represent a road safety audit of Emerald Falls Road, however the following issues were noted during the inspection (direction of travel toward Emerald Creek):

- Tree located close to carriageway near Henry Hannam Drive intersection (left-hand side).
- Tight radius at approximate chainage 400 (Rock Ridge Farming access). Estimated to be 25 m . Tree located close to carriageway on inside curve
- Road narrows around bend at culvert crossing locations (chainage 800) to approximately 6.0 m .
- Crest in road (approximate chainage 1000).
- Tight radius at approximate chainage 1160 (estimated to be 30 m).
- Road narrows prior to bend at approximate chainage 1450.
- Crest in road (approximate chainage 1600).
- Tight radius at approximate chainage 2450 (estimated to be 35 m).
- Tight radius at approximate chainage 2800 (estimated to be 35 m).
- Crest in road (approximate chainage 3000).
- Crest in road (approximate chainage 3150).
- Crest in road (approximate chainage 3350).
- Wrights Lookout access pushes out into the road carriageway with a poor vertical geometry interface. This provides an arrangement that is likely to surprise unsuspecting motorists and potentially cause them to veer to the other side of the road. Horizontal geometry also poor through this section of road (approximate chainage 3350 to 3800).
- Crest in road (approximate chainage 3800).
- Causeway road crossing of Emerald Creek tributary.
- Tight radius at approximate chainage 4550 (estimated to be 25m).

It is recommended that Council undertake a site inspection of Emerald Falls road to determine if provision of additional road signage would be appropriate on the road to alert drivers of upcoming tight bends, road crests, the causeway and other elements that may be unexpected. Particular attention should be given to the Wrights Lookout access area.

Photographs taken during the site inspection are provided below.

Photograph 2.1 - Emerald Falls Road Chainage 50

Photograph 2.2 - Emerald Falls Road Chainage 100

Photograph 2.3 - Emerald Falls Road Chainage 400

Photograph 2.4 - Emerald Falls Road Chainage 800

Photograph 2.5 - Emerald Falls Road Chainage 1000

Photograph 2.6 - Emerald Falls Road Chainage 1600

Photograph 2.7 - Emerald Falls Road Chainage 2150

Photograph 2.8 - Emerald Falls Road Chainage 3000

Photograph 2.9 - Emerald Falls Road Chainage 3400

Photograph 2.10 - Emerald Falls Road Chainage 3600

Photograph 2.11 - Emerald Falls Road Chainage 3850

Photograph 2.12 - Emerald Falls Road Chainage 3900

Photograph 2.13 - Emerald Falls Road Chainage 4200

Photograph 2.14 - Emerald Falls Road Chainage 4300

Photograph 2.15 - Emerald Falls Road Chainage 4450

2.3 Kay Road

A site inspection of Kay Road was also undertaken by CivilWalker Consulting Engineers on 4 September 2023. Kay Road runs from its intersection with the Kennedy Highway to the subject development site where it terminates, a distance of approximately 5.5 km . Figure 2.3 shows the location of Kay Road.

There is also no posted speed limit on Kay Road, and it has therefore been assumed that the standard state guidelines for assessing and posting speed limits on Council owned roads also apply to Kay Road, being $100 \mathrm{~km} / \mathrm{h}$.

The existing Kay Road reserve varies in width along its length as follows:

- 40 m wide from the Kennedy Highway intersection for approximately 1.30 km to the Sabin Road East intersection.
- 40 m wide from Sabin Road East past Lot 1 on SP252425, a distance of approximately 50 m .
- 60 m wide from above location for approximately 0.12 km to the Rollinson Drive intersection.
- 40 m wide from the Rollinson Drive intersection to the end of Kay Road, a distance of approximately 4.04 km .

The road carriageway is sealed for a significant portion of its length as follows:

- Sealed full width from the Kennedy Highway intersection to approximate chainage 1550 (near Rollinson Drive intersection).
- Sealed single lane in road centre from approximate chainage 1550 to approximate chainage 3200 (Howe Farms access).
- Un-sealed from approximate chainage 3200 to the roads end at chainage 5535.

The road carriageway width varies as follows:

- Kennedy Highway to Sabin Road East - carriageway approximately $8 m-9 m$ wide with $6 m$ wide seal.
- Sabin Road East to near Rollinson Drive - carriageway approximately 8m-9m wide with $6.5 m$ wide seal.
- Rollinson Drive - Howe Farms Access - carriageway approximately 7m - 8m wide with 3.5 m wide seal.
- Howe Farms Access - carriageway approximately $7 m$ - $8 m$ wide (portion of gravel formation showing grass, 4 m not showing grass due to traffic).

Figure 2.3 - Kay Road (courtesy of Queensland Globe)
Similar to Emerald Falls Road, an assessment of existing road geometry was undertaken for Kay Road. Reference is made to the drawings within Appendix A. Drawing 250-001-SK01 details the adopted horizontal geometry and drawings 250-001-SK02 and SK03 details vertical geometry ascertained from the Lidar data. Existing horizontal curves vary in radius from approximately 30 m to 100 m with five (5) of the seven (7) curves within the 30 m to 60 m radius range. The final two (2) curves are approximately 100 m in radius. Existing vertical grades typically vary from 0.5% to up to a maximum of 10.6% with approximately 727 m of the 5.5 km long road (13.2\%) estimated to have a vertical grade less than the desirable minimum of 0.5\%.

The existing horizontal geometry does not meet current design standards (Austroads Guide to Rural Road Design), for the speed limit of $100 \mathrm{~km} / \mathrm{h}$ however, this is common for low traffic use / low speed environment rural roads as noted within Section 2.2 of this report. Whilst the default speed limit may be $100 \mathrm{~km} / \mathrm{h}$, Austroads notes that road design elements are not required to be designed for this speed on low volume rural roads, with "alignments provided in these circumstances expected to produce a high degree of driver alertness, so lower standards are both expected and acceptable". As noted for Emerald Falls Road, operating speeds on rural roads tend to be lower to suit conditions.

This report does not represent a road safety audit of Emerald Falls Road; however the following issues were noted during the inspection (direction of travel away from Kennedy Highway):

- Tight radius after Kennedy Highway intersection (estimated to be 40 m).
- Series of road crests from approximate chainage 250 to approximate chainage 600 . These are signed
- Crest in road (approximate chainage 900).
- Tight radius at approximate chainage 1350 (estimated to be 40m).
- Road narrows after bend.
- Tight radius at approximate chainage 1550 (estimated to be 30m).
- Road narrows after bend with sealed width reducing to single lane.
- Seal end at approximate chainage 2600.
- Tree close to carriageway at approximate chainage 3950.
- Tree close to carriageway at approximate chainage 4550.
- Road locally narrows to single lane at culvert approximate chainage 4600, then immediately widens again.
- Series of trees close to carriageway at approximate chainage 4750.
- Tree close to carriageway at approximate chainage 5400

Whilst Kay Road provides improved signage compared to Emerald Falls Road, it is recommended that Council undertake a site inspection to determine if provision of additional road signage would be appropriate on the road to alert drivers of upcoming tight bends, road crests, causeways and other elements that may be unexpected. Consideration should also be given to whether trees close to the carriageway should be removed or if signage warning of the obstacle should be provided.

Photographs taken during the inspection were lost and therefore images from Google Maps have been provided below.

Photograph 2.16 - Kay Road Chainage 100

Photograph 2.17 - Kay Road Chainage 350

Photograph 2.18 -Kay Road Chainage 550

Photograph 2.19 - Kay Road Chainage 1300

Photograph 2.20 - Kay Road Chainage 1550

Photograph 2.21 -Kay Road Chainage 1750

Photograph 2.22 - Kay Road Chainage 2100

Photograph 2.23 - Kay Road Chainage 2400

Photograph 2.24 -Kay Road Chainage 2550

Photograph 2.25 - Kay Road Chainage 3400

Photograph 2.26 - Kay Road Chainage 3600

Photograph 2.27 -Kay Road Chainage 3900

Photograph 2.28 - Kay Road Chainage 4200

Photograph 2.29 -Kay Road Chainage 4850

Photograph 2.30 -Kay Road Chainage 5250

Photograph 2.31 -Kay Road Chainage 5400

Photograph 2.32 -Kay Road Chainage 5500

2.4 Traffic Volumes

Traffic counts for both Emerald Falls Road and Kay Road have been provided by Council (refer Appendix B). Traffic count data has been provided both during the week of the July 2023 Roots Festival and in the week following the festival. This section considers the traffic counts after the Roots Festival, i.e. a "typical" day.

Emerald Falls Road

Traffic count data for Emerald Falls Road was obtained in the week of 19 July 2023 to 26 July 2023 near the intersection of Henry Hannam Drive (approximate chainage 80). The following average daily count was established (considered to be AADT):

- Chainage $80=184$ vehicles per day

Kay Road

Traffic count data for Kay Road was also obtained in the week of 19 July 2023 to 26 July 2023 at two locations. Once approximately 100 m from the Kennedy Highway intersection and the other approximately 3.04 km from the Kennedy Highway intersection. The following average daily counts were established (considered to be AADT):

- Chainage $100=177$ vehicles per day
- Chainage $3040=53$ vehicles per day

2.5 Existing Road Requirements

Section D1 "Road Geometry" within the FNQROC Regional Development Manual (FNQROC) provides details on minimum requirements for the design of road work using principles of street design to provide appropriate safety and reduce vehicular conflicts. In particular, Table D1.4 "Rural Road Elements" provides rural road design parameter for formation, pavement and seal width in areas identified as being suited to rural and rural residential developments. The following elements apply:

Traffic Volume of < 100 vehicles per day

- Pavement Width $=5.5 \mathrm{~m}$
- Seal Width $=4.5 \mathrm{~m}$

Traffic Volume of 100-999 vehicles per day

- Pavement Width $=6.5 \mathrm{~m}$
- Seal Width $=6.5 \mathrm{~m}$

Emerald Falls Road

Based on traffic counts provided by Council, Emerald Falls Road has an estimated AADT of 184 vehicles per day. This traffic is accessing local properties and the Emerald Creek Falls day area.

To meet the requirements of FNQROC for a rural road with 100-999 vehicles per day, a carriageway width (ie pavement width) of 6.5 m is required and that width is also required to be sealed.

Currently, Emerald Falls Road has a carriageway width varying from approximately 6 m to 7 m along its length. The length of Emerald Falls Road is un-sealed. It therefore does not meet the requirements of FNQROC.

Kay Road

Based on traffic counts provided by Council, Kay Road Emerald Falls Road has an estimated AADT of 177 vehicles per day at its northern end and 53 vehicles per day at its southern end. It has been assumed that the higher traffic volume ceases at the Rollinson Drive intersection at approximate chainage 1550.

Currently, between the Kennedy Highway and Sabin Road East (traffic volume = 177 vehicles per day), the existing carriageway is greater than the required 6.5 m width, however the seal width is approximately 6 m wide and therefore does not meet the requirements of FNQROC.

Between Rollinson Drive and the Howe Farm access (traffic volume $=53$ vehicles per day), the existing carriageway is greater than the required 6.5 m width, however the seal width is approximately 3.5 m wide and therefore does not meet the requirements of FNQROC.

From the Howe Farm access and the end of Kay Road (traffic volume $=53$ vehicles per day), the existing carriageway is greater than the required 6.5 m width, however the road is not sealed and therefore does not meet the requirements of FNQROC (based on the assumption of traffic above).

The Local Government Act (2009) does not require local government roads to be upgraded to a higher standard to which they were originally constructed and therefore upgrade of road assets is typically limited to Council's capital works program, special charge schemes or private development requirements. As noted in previous sections of this report, vehicles do tend to vary speeds to suit the road environment on rural roads.

3. Proposed Development

3.1 General

A development permit for a material change of use is sought to facilitate the expansion of the existing caravan Park (bush camping) over the site in the form of a tourist park. In addition to the tourist park, after a successful trial over the site during the Kuranda Roots Festival, the proposal is to include the provision of an outdoor sport and recreation and function facility to allow for events to be held over the site. The proposed development is for a staged approval incorporating both events, additional camping areas, cabins, and recreational vehicle accommodation. Staged development is proposed as follows:

Stage 1

- 4 x camping sites (camps $15-18$).
- $5 \times$ recreational vehicle.
- Events and / or functions catering for up to a total of 2,000 guests per year at existing lake-side day area and camp area 2 , with no single event hosting more than 1,500 guests and no function hosting more than 300 guests.
- Manager's residence.
- Additional amenities (toilets / showers) for the above.

Stage 2

- $2 \times$ camping sites (camps $19-20$).
- $5 \times$ recreational vehicle.
- $3 \times$ cabin sites.
- Additional 1,500 guests attending events / functions per year at existing lake-side day area and camp area 2 , new total 3,500 guests per year, with no single event hosting more than 1,500 guests and no function hosting more than 300 guests.
- Additional amenities (toilets / showers) for the above.

Stage 3

- $5 \times$ cabin sites.
- Additional 2,500 guests attending events / functions per year at existing lake-side day area and camp area 2, new total 6,000 guests per year, with no single event hosting more than 2,000 guests and no function hosting more than 500 guests.
- Additional amenities (toilets / showers) for the above.

Stage 4

- Additional 6,000 guests attending events / functions per year at existing lake-side day area and camp area 2, new total 12,000 guests per year, with no single event hosting more than 2,000 guests and no function hosting more than 500 guests.
- Additional amenities (toilets / showers) for the above.

Only a single camp site will be accessed via Emerald Falls Road for the new development. All other nonevent components of the new development will access via Kay Road.

3.2 Traffic Generation

3.2.1 Existing Camp Site Generated Volumes

Kanjini have provided historical data that details the number of existing vehicles that have visited their site between 2018 and 2021. This data is provided in Appendix C. The visiting vehicles are associated with existing camping sites, of which there are 13. Kanjini have advised the following:

- When bookings are made for the camp sites details of vehicles are required to be registered
- 19.8% of bookings made cancel and therefore only 80.2% of registered vehicles arrive.
- Some additional vehicles are booked via email after the initial booking is made, which is estimated to be an additional $10-20 \%$ vehicles.
- Security cameras on site identify that 5-10\% of campers leave the site during their stay, with that occurring typically once.

Camping activities in the region have increased since the Covid pandemic of 2020. It has been assumed that this increased camping activity will continue and therefore only vehicle data from Kanjini's database for 2020 and 2021 have been utilised.

Kanjini's database for 2020 and 2021 identified that vehicles registered to attend site were 751 and 712, respectively. The higher vehicle value of 2020 was adopted for assessment. Consideration was given to the narrative above from Kanjini regarding vehicle cancellations and additional vehicles being registered after initial bookings, with the following concluded:

- Number of registered vehicles on initial booking $=751$.
- 19.8% of bookings made cancel, therefore reduce by 20%.
- 10-20\% additional vehicles registered after initial booking, therefore increase by 20%.
- 5-10\% of additional trips over and above arrival / departure, therefore increase by 10%.

Based on the above assumptions, the following yearly traffic was calculated:
Number of vehicles $=751 \times 1.2$ (20% increase) $/ 1.2$ (20% decrease) $\times 1.1$ (10% increase) $=826$ vehicles
To determine the annual average daily traffic (AADT), seasonal factors and weekly camping habits are required to be considered. Kanjini have advised that whilst campers visit all year round and during the full week, the busiest periods are between April and October (ie 7 months out of 12 months) and during a three day period spanning over the weekend. For the purpose of this report, it has been conservatively assumed that the annual traffic visits only between April and October and between Friday and Sunday. The AADT is therefore calculated as follows:

AADT $=826$ vehicles * [(12 months / 7 months) * (7 days / 3 days)]/ $365=9$ vehicles per day
The calculated AADT can therefore resolve to a number of vehicles per day for each camp site. Since 2019 13 campsites have operated. The AADT generated per campsite is therefore calculated as follows:

AADT per campsite $=9$ vehicles per day $/ 13$ camp sites $=0.7$ vehicles per day per camp site

3.2.2 New Camp Site Generated Volumes

It is considered reasonable to apply the traffic generation rate for the existing camp sites to the proposed new camp sites. Therefore, a traffic generation rate of 0.7 vehicles per day has been allocated to each of the proposed new sites.

3.2.3 Cabin and Recreational Vehicle Generated Volumes

This type of accommodation will function similarly to camp sites, with the difference being the type of vehicle that visitors will arrive in. It is expected that the traffic volume will not differ from camping sites. Therefore, the traffic generated is as follows:
$\begin{array}{ll}\text { AADT per Cabin site } & =0.7 \text { vehicles per day per camp site } \\ \text { AADT per RV site } & =0.7 \text { vehicles per day per camp site }\end{array}$
Table 3.1 provides details on traffic generation for new development associated with camping activities. Existing development is not included because this is captured in the Council traffic counts.

Table 3.1 Daily Traffic Generated by Normal Use Development (ie Excluding Large Events)

Stage	Emerald Falls Road			Kay Road		
	No.	Generation Rate	Traffic Volume	No.	Generation Rate	Traffic Volume

Stage 1

Camp Sites	-	0.70	-	4	0.70	2.8
Recreational Vehicles	-	0.70	-	5	0.70	3.5
Cabins	-	0.70	-	-	0.70	-
Manager Residence	-	1.00	-	1	1.00	1.0
Total Vehicles/Day						

Stage 2

Camp Sites	-	0.70	-	2	0.70	1.4	
Recreational Vehicles	-	0.70	-	5	0.70	3.5	
Cabins	-	0.70	-	3	0.70	2.1	
Total Vehicles/Day							

Stage 3

Camp Sites	-	0.70	-	-	0.70	-
Recreational Vehicles	-	0.70	-	-	0.70	-
Cabins	-	0.70	-	5	0.70	3.5
Total Vehicles/Day						

Stage 4

Camp Sites	-	0.70	-	-	0.70	-
Recreational Vehicles	-	0.70	-	-	0.70	-
Cabins	-	0.70	-	-	0.70	-
Total Vehicles/Day						

3.2.4 Special Event Traffic Generation

The proposed development seeks to allow events to be held throughout the site with varying volumes within Stages 1 to 4 . Guest volumes will vary from 2,000 per year (after Stage 1) to 10,000 per year (after Stage 4) however, guest volumes for any single event will likely remain at less than 1,500. In considering arrival of guests to an event in private vehicles it is noted that the passenger / vehicle configurations could vary significantly. Depending on the type of function (ie wedding, other social or corporate) some guests may arrive separately, a considerable portion are likely to arrive in pairs (ie husband / wife, partners, friends, work colleagues etc.) and some may car pool providing a higher number of passengers per vehicle. For the purpose of this report, it has been assumed that vehicles arriving at the site will contain the following passenger distribution:

- 50% of guests travelling with 2 guests per vehicle
- 30% of guests travelling with 4 guests per vehicle (ie car-pooling)
- 20% of guests travelling with 6 guests per vehicle (ie mini-bus)

This is considered a reasonable assumption given the rural location of the site and discounts being offered to those who do not arrive in their own vehicle (Kanjini advice dated 30 June 2022) will likely encourage car-pooling and other forms of transport with higher capacity than a standard passenger vehicle (ie a minibus).

Considering the above, this equates to 358 vehicles for every 1,000 guests that travel to an event, or 0.358 vehicles per guest (conversely, 2.8 guest per vehicle).

The recent Kuranda Roots festival event also requires consideration. This type of event differs from a typical wedding or corporate event. The most recent occurrence of this event was in July 2023 at which there were 1,200 guests in attendance, arriving in a total of 500 vehicles. The number of vehicles in attendance are known because each vehicle was required to be registered at a location adjacent to the existing helipad on Emerald Falls Road prior to entering the site. After registration, each vehicle was provided with a registration sticker which was placed on the windscreen by registration officers. Registered vehicles then made their way to the event entrance, which they were not permitted to enter without a registration sticker. A total of 500 stickers were allocated during the 2023 festival.

Council provided counters to determine traffic volumes along Emerald Falls Road during the week of the festival and also the following week after. Assessment of the traffic count data determined that over the three (3) days the festival was held (Friday $14^{\text {th }}$ July to Sunday $16^{\text {th }}$ July, 2023), the days preceding the festival (set-up) and the days after the festival (demobilisation and final guests leaving) there was an increase in the number of vehicles along Emerald Falls Road. It has been determined that the increase in vehicles does not align with the number of vehicles that attended the festival. For example, it is noted that on Thursday $13^{\text {th }}$ July vehicles attended the site with people setting up stalls. The number of vehicles that were on Emerald Falls Road that day was $153(320-167)$ higher than the Thursday after the event. This increase in vehicles is not only due to the festival given that only a handful of vehicles were in attendance on site setting up the stalls. It is considered that additional vehicles were on Emerald Falls Road that week for reasons other than that associated with the festival (eg. increased attendance at Emerald Falls day area).

Given this anomaly, it is considered most appropriate to calculate the traffic generated by the festival based on site records taken for the number of guest and number of vehicles in attendance. Based on the vehicle registration process, an event traffic generation figure of 0.417 vehicles per guest was calculated (being 500 vehicles transporting 1,200 guests, equivalent to 2.4 guests per vehicle). This figure is considered reasonable and has been adopted for assessment.

Kanjini have advised that such events will only occur every 2-3 months and therefore they will be isolated events. Vehicles associated with such events will not be typical users of Kay Road (only access for such events) and therefore it is inappropriate to assign traffic generated by these events to the annual average daily traffic for the road.

For example, if an event hosts 1,500 guests, it could generate $1,500 \times 0.417$ vehicles, this equates to 683 vehicles (2.4 guests per vehicle). If the event was over a period of three days, this would equate to an average of 228 vehicles per day. Resolving this to an annual average daily traffic is of no use because it adds 683 vehicles for 3 days every, say 2 months, equalling an annual average daily traffic volume of 11 vehicles per day over a year (6 events per year, therefore that 683×6 events / 365 days). This is not a useful input for road management. Similarly, the 228 vehicles per day is not a useful road management input as an increased daily volume, because it occurs so rarely. Table 3.2 provides details on traffic estimated to be generated by large events.

Table 3.2 Traffic Generated by Large Event Use (access Via Kay Road or Emerald Falls Road)

Stage	Kay Road		
	No. Yearly Guests	Generation Rate	Yearly Traffic Volume
Stage 1	2,000	0.417	834
Stage 2	1,500	0.417	626
Stage 3	2,500	0.417	1,043
Stage 4	6,000	0.417	$\mathbf{2 , 5 0 2}$
	Total Additional Yearly Traffic (over both Emerald Falls \& Kay Roads)	$\mathbf{5 , 0 0 5}$ vehicles	
	Total AADT Traffic	$\mathbf{1 4}$ vehicles / day	

It is not appropriate to allocate traffic associated with these types of events to Annual Average Daily Traffic because it they do not represent the normal use of the road environment. As can be seen from the calculations within Table 3.2, events will have more of an impact on the road environment than what an average annual daily traffic volume increase of 14 vehicles per day would.

This is why the Department of Transport and Main Roads published the guideline entitled "Event Traffic Management Design Guidelines" (July 2022). It was produced to provide guidance on traffic control measures and devices used to warn, instruct and guide road users in the negotiation of events on roads in a safe manner. It is applicable to traffic management for all types of events (including concerts, festivals etc...) which cause interference or obstruction to the normal use of a road by any road user. The guide is 58 pages long and therefore has not been appended to this report, only the cover sheet and table of contents have been included (refer Appendix D). The document provides guidance on the following:

- Event inputs (eg type of event, location, number of participants, duration, timing, set-up requirements and activities.
- Interface with roads, traffic volume inputs, access, parking requirements, etc..
- Risk management.
- Traffic guidance schemes.
- Traffic controllers, police and event traffic marshals.
- How to implement and remove a management plan.
- Notification and communication.
- Incident Management.
- Post event traffic management plan evaluation.

It is recommended that Council condition any approval associated large scale events as part of the development site (say, an event with 1,000 guests or more) with the requirement to provide an Event Traffic Management Plan to Council.

It is noted that previous large events held at the site (with access via Emerald Falls Road) have provided a traffic management plan to Council. There have been no reported incidents associated with traffic at those events, with the road performing satisfactorily under the management plan.

4. Impact Assessment and Proposed Mitigation

4.1 Normal Operation of Roads

Based on the above calculations, for the normal operation of the proposed development (ie camping sites, recreational vehicle sites and cabin sites) there is no trigger for road upgrades associated with the increase in traffic volume by the proposed development when considering road carriageway or pavement width in accordance with FNQROC requirements.

Traffic on Kay Road will increase by 19 vehicles per day associated with the additional camping sites, recreational vehicle sites and cabin sites. This will increase the existing annual average daily traffic at the northern end of Kay Road from 177 vehicles per day to 196 vehicles per day, which remains within the FNQROC rural road range of "100-999 vehicles per day", thereby not triggering an upgrade. Traffic on the southern end of Kay Road (ie near the site) from 53 vehicles per day to 72 vehicles per day. This remains within the FNQROC rural road range of " <100 vehicles per day", thereby also not triggering an upgrade.

Consideration has been given to the existing Emerald Falls Road and Kay Road arrangements and it is recommended that additional signage be provided at tight bends, crests, causeway locations and other similar elements providing improved messaging to drivers. It is also recommended that consideration be given to removing isolated trees within the road reserve that are located close to the existing carriageway to reduce the risk of vehicles conflicting with them.

These works could be undertaken as part of the proposed development however, if this was the case it is proposed that costs associated with the improvements would be offset against development headwork contributions. This is considered a reasonable approach because the improvements would provide a community benefit.

4.2 Special Events

Special events will result in a significant increase in traffic volumes for isolated short periods of time. This will certainly impact on the normal use of Kay Road, causing interference or obstruction to any road user.

It is not proposed to mitigate this issue by providing cost prohibitive road upgrades, allowing for a significant increase in traffic volume over such a short period of time.

Mitigation is proposed in accordance with the Department of Transport and Main Roads' guideline entitled "Event Traffic Management Design Guidelines" (July 2022). This guideline was produced to provide mitigation measures for these types of events and provide guidance on traffic control measures / devices to warn, instruct and guide road users in the negotiation of events on roads in a safe manner. It is applicable to traffic management for all types of events (including concerts, festivals etc...) which cause interference or obstruction to the normal use of a road by any road user.

It is therefore recommended that Council condition any approval associated large scale events as part of the development site (say, an event with 1,000 guests or more) with the requirement to provide an Event Traffic Management Plan to Council.

4.3 Pavement Impact

Both Emerald Falls Road and Kay Road are considered "flexible" pavements, which are pavements with unbound granular pavement layers with or without thin bituminous surfaces (sprayed seal or up to 50mm thick asphalt). The additional loading on flexible pavement has been undertaken considering empirical methods in accordance with Section 7 of the Austroads Guide to Pavement Technology, Part 2.

For flexible pavements the standard axle repetitions (calculated with a load damage exponent of 4, refer Austroads Table 7.7) are commonly referred to as equivalent standard axles (ESAs). An equivalent standard axle is a single axle with dual tyres applying a load of 8.2 tonne (80 kN) to the pavement.

To calculate the additional traffic loading, associated with development, vehicle types were determined and then converted to equivalent standard axles. This was undertaken in accordance with Section 7.6.2 of Austroads.

Axle configurations on typical vehicles and the load applied to them to generate an ESA are as follows:

- Single Axle with Single Tyres 53 kN
- Single Axle with Dual Tyres 80kN
- Dual Axle with Dual Tyres 135 kN
- Tri Axle with Dual Tyres 181kN

To convert a load applied to an axle arrangement to an ESA for flexible pavements, the following formula is adopted (Austroads Formula 16):

No. of ESAs $=(\text { Load } / \text { Standard Load })^{4}$
where, \quad load $=$ that load applied to an axle group standard load = load required to be applied to axle group to achieve an ESA

Normal Traffic Use

As identified within Section 3 of this report, the proposed number of vehicles on Emerald Falls Road will not change. Emerald Falls Road has therefore not been considered further in this section.

The type of vehicles accessing Kay Road will typically be passenger cars, four wheel drives and recreational vehicles. The vehicles adopted for assessment were as follows:

- Toyota HiLux Utility (typical visits).
- Jayco Conquest Motorhome (recreational vehicle), being an Iveco "Daily".

It has been conservatively assumed that all vehicles are loaded to their respective maximum capacity
For Kay Road, the daily increase in vehicles to the site (after Stage 4) are as follows:

- Camp Sites (Toyota HiLux allowed)

5

- Cabin Sites (Toyota HiLux allowed) 7
- Recreational Vehicle Sites (Jayco Conquest allowed) 6
- Manager's vehicle (Toyota HiLux allowed)

Calculation of ESAs associated with the above movements are as follows (axle load distribution data is provided in Appendix E):

- Toyota HiLux $=(12.5 \mathrm{kN} / 53 \mathrm{kN}) 4$ front axle $+(15.7 \mathrm{kN} / 53 \mathrm{kN}) 4$ rear axle $=0.011 \mathrm{ESA}$
- Jayco Conquest $=(20.6 \mathrm{kN} / 53 \mathrm{kN}) 4$ front axle $+(36.3 \mathrm{kN} / 53 \mathrm{kN}) 4$ rear axle $=0.242 \mathrm{ESA}$

Based on the above vehicle calculations, the following additional daily pavement loading will be observed due to normally site operation:

$$
\text { Total Additional ESAs }=5 \times 0.011+7 \times 0.011+6 \times 0.242+1 \times 0.011=1.6 \text { ESAs }
$$

To put this into perspective, a 14 tonne rigid truck with a single rear axle (dual wheels) that is fully loaded results in a loading of 2.6 ESAs and a fully loaded semi-trailer vehicle results in a loading of 5.0 ESAs. The increase in daily traffic after Stage 4 is therefore equivalent to 62% of a single 14 tonne rigid truck load or 32% of a single semi-trailer load.

Large Event Traffic Use

The type of vehicles accessing Kay Road and/or Emerald Falls Road for a large event will typically be passenger cars, four wheel drives, and minibuses. The vehicles adopted for assessment were as follows:

- Toyota HiLux Utility (typical visits)
- Toyota Coaster (minibus during events)

It has been conservatively assumed that all vehicles are loaded to their respective capacity. Calculation of ESAs associated with the above movements are as follows:

- Toyota HiLux $=(12.5 \mathrm{kN} / 53 \mathrm{kN}) 4$ front axle $+(15.7 \mathrm{kN} / 53 \mathrm{kN}) 4$ rear axle $=0.011 \mathrm{ESA}$
- Toyota Coaster $=(22.5 \mathrm{kN} / 53 \mathrm{kN}) 4$ front axle $+(31.4 \mathrm{kN} / 53 \mathrm{kN}) 4$ rear axle $=0.155 \mathrm{ESA}$

Assuming 12,000 guests at events per year (and adopting the vehicle distribution noted in Section 3.2.4), the traffic loading is calculated as follows:

- 50% of guests travelling with 2 guests per vehicle 3,000 vehicles
- 30% of guests travelling with 4 guests per vehicle (ie car-pooling) 900 vehicles
- 20% of guests travelling with 6 guests per vehicle (ie mini-bus) 400 vehicles

Based on the above vehicle calculations, the following additional daily pavement loading will be observed due to events hosting 12,000 guests in total per year:

$$
\text { Total Additional ESAs }=3,000 \times 0.011+900 \times 0.011+400 \times 0.155=105 \text { ESAs }
$$

To put this into perspective, this is equivalent to 0.29 ESAs per day (annually), which is 11.1% of the pavement loading from a single full 14 tonne truck per day or 5.8% of the pavement loading from a single semi-trailer.

Pavement loading associated with the development is therefore considered not to have a significant impact on the pavement capacity.

4.4 Kanjini Co-Op

In their discussions with CivilWalker Consulting Engineers throughout the development of this report, Kanjini Co-Op have noted that they would be willing to discuss provision of signage upgrades along both Emerald Falls Road and Kay Road with Council. They are also interested in discussing lengthening of the existing road culvert at approximate chainage 4600 on Kay Road, where the carriageway currently narrows to a single lane. Considered a benefit to the community, Kanjini are prepared to discuss delivering such upgrades with Council on the condition that the cost of any upgrades be offset by an equal discount on headwork contribution charges associated with the development.

Horizontal Curve Data Vertical Geometry Grade（\％）										0.64%				－1409\％							0．989\％							\％
Vertical Grade Length DATUM RL393．000		6.2044						${ }^{65 .}$																				
NATURAL SURFACE			$\begin{aligned} & \stackrel{y y}{6} \\ & \stackrel{y}{\circ} \\ & \hline \end{aligned}$	$\begin{gathered} \tilde{(0} \tilde{g} \\ \hline \end{gathered}$			Six							獄	$\begin{aligned} & \text { 喜 } \\ & \stackrel{y}{*} \end{aligned}$	$\stackrel{\text { \％}}{\substack{\text { \％}}}$		$\begin{gathered} \stackrel{\circ}{0} \\ \stackrel{⿳ 亠 丷 ⿵ 冂 丶 十 ⿴}{1} \end{gathered}$	$\begin{gathered} \stackrel{y y y}{6} \\ \stackrel{\rightharpoonup}{3} \\ \hline \end{gathered}$	$\begin{gathered} \overline{\hat{F}} \underset{寸}{+} \end{gathered}$		等	$\begin{aligned} & \text { ⿳亠丷⿵冂⿱十口又寸 } \\ & \hline \end{aligned}$					
CHAINAGE		쀼ํ	橆	閉			镸亭		\％	遃営				\％	年	ะ్రి		\％	\％	）		\％	）	\％	轌			

Appendix B
Council Traffic Counts

Emerald Falls Rd - TC Location CH 80

© 2022 Mareeba Shire Council (MSC). Based on or contains data provided by MSC and The State of Queensland (Department of Resources) [2022]. In consideration of these agencies permitting use of this data you acknowledge and agree that these agencies give no warranty in relation to the data (including accuracy, reliability, completeness, currency or suitability) and accept no liabily use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.

MetroCount Traffic Executive Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-758 -- English (ENA)

Datasets:

Attribute:
Direction:
Survey Duration:
Zone:
File:
Identifier:
Algorithm:
Data type:
Profile:
Filter time:
Included classes:
Speed range:
Direction:
Separation:
Name:
Scheme:
Units:
In profile:

Site: [Emerald Falls Road] Intersection Henry Hannam Dr (During Event) @ Ch $80<100>$ Mareeba
7 - North bound A>B, South bound B>A. Lane: 0
10:48 Wednesday, 12 July 2023 => 9:51 Wednesday, 19 July 2023,
Emerald Falls Road 0 2023-07-19 0952.EC0 (Plus)
FN47XFS5 MC56-L5 [MC55] (c)Microcom 19Oct04
Factory default axle (v5.07)
Axle sensors - Paired (Class/Speed/Count)

10:49 Wednesday, 12 July 2023 => 9:51 Wednesday, 19 July 2023 (6.96012)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
$10-160 \mathrm{~km} / \mathrm{h}$.
North, East, South, West (bound), P = North, Lane $=0-16$
Headway > 0 sec, Span 0-100 metre
Default Profile
Vehicle classification (AustRoads94)
Metric (metre, kilometre, $\mathrm{m} / \mathrm{s}, \mathrm{km} / \mathrm{h}$, kg , tonne)
Vehicles = 2721 / 2726 (99.82\%)

Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-758
Site: Emerald Falls Road.0.1NS
Description: Intersection Henry Hannam Dr (During Event) @ Ch $80<100>$
Filter time:
Scheme:
Filter:

	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Averages	
								$1-5$	1-7
Hour									
0000-0100	4.0	0.0	0.0	0.0	1.0	6.0	7.0	1.0	2.6
0100-0200	3.0	0.0	0.0	0.0	2.0	6.0	5.0	1.0	2.3
0200-0300	1.0	0.0	0.0	0.0	1.0	2.0	3.0	0.4	1.0
0300-0400	0.0	0.0	0.0	1.0	1.0	3.0	3.0	0.4	1.1
0400-0500	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.2	0.3
0500-0600	6.0	2.0	2.0	2.0	4.0	3.0	4.0	3.2	3.3
0600-0700	19.0	7.0	6.0	16.0	8.0	4.0	3.0	11.2	9.0
0700-0800	13.0	9.0	5.0	4.0	9.0	14.0	10.0	8.0	9.1
0800-0900	21.0	10.0	2.0	6.0	15.0	18.0	7.0	10.8	11.3
0900-1000	24.0	4.0	6.0	17.0	26.0	19.0	19.0	15.4	16.4
1000-1100	41.0	5.0	2.0	19.0	38.0	34.0	18.0	21.0	22.4
1100-1200	34.0	20.0	17.0	18.0	41.0	48.0	47.0	26.0	32.1
1200-1300	46.0	20.0	25.0	37.0	77.0	61.0	39.0	41.0	43.6
1300-1400	35.0	23.0	21.0	37.0	69.0	68.0	50.0	37.0	43.3
1400-1500	23.0	22.0	21.0	36.0	92.0	50.0	50.0	38.8	42.0
1500-1600	28.0	20.0	14.0	35.0	69.0	69.0	44.0	33.2	39.9
1600-1700	27.0	15.0	23.0	29.0	60.0	32.0	43.0	30.8	32.7
1700-1800	20.0	14.0	20.0	23.0	53.0	44.0	36.0	26.0	30.0
1800-1900	12.0	3.0	7.0	10.0	34.0	18.0	22.0	13.2	15.1
1900-2000	4.0	1.0	1.0	6.0	23.0	19.0	15.0	7.0	9.9
2000-2100	3.0	1.0	2.0	12.0	15.0	15.0	17.0	6.6	9.3
2100-2200	0.0	1.0	3.0	6.0	8.0	14.0	7.0	3.6	5.6
2200-2300	0.0	0.0	0.0	4.0	6.0	9.0	3.0	2.0	3.1
2300-2400	0.0	0.0	0.0	2.0	5.0	12.0	4.0	1.4	3.3
Totals									
0700-1900	324.0	165.0	163.0	271.0	583.0	475.0	385.0	301.2	338.0
0600-2200	350.0	175.0	175.0	311.0	637.0	527.0	427.0	329.6	371.7
0600-0000	350.0	175.0	175.0	317.0	648.0	548.0	434.0	333.0	378.1
0000-0000	365.0	177.0	177.0	320.0	657.0	569.0	456.0	339.2	388.7
AM Peak	1000	1100	1100	1000	1100	1100	1100		
	41.0	20.0	17.0	19.0	41.0	48.0	47.0		
PM Peak	1200	1300	1200	1300	1400	1500	1400		
	46.0	23.0	25.0	37.0	92.0	69.0	50.0		

MetroCount Traffic Executive Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-783 -- English (ENA)

Datasets:

Site:	[Emerald Falls Road] Intersection Henry Hannam Dr (After Event) @ Ch 80<100>
Attribute:	Mareeba
Direction:	$7-$ North bound A>B, South bound B>A. Lane: 0
Survey Duration: Zone: File: Identifier: Emerald Falls Road 0 2023-07-26 1114.EC0 (Plus) Algorithm: FN47XFS5 MC56-L5 [MC55] (c)Microcom 19Oct04 Data type: Factory default axle (v5.07) Axle sensors - Paired (Class/Speed/Count).	

Profile:
Filter time: 11:27 Wednesday, 19 July 2023 => 11:13 Wednesday, 26 July 2023 (6.99094)
Included classes: $\quad 1,2,3,4,5,6,7,8,9,10,11,12$
Speed range:
Direction:
Separation:
Name:
Scheme:
Units:
In profile:

North, East, South, West (bound), $P=$ North, Lane $=0-16$
Headway > 0 sec, Span 0-100 metre
Default Profile
Vehicle classification (AustRoads94)
Metric (metre, kilometre, $\mathrm{m} / \mathrm{s}, \mathrm{km} / \mathrm{h}, \mathrm{kg}$, tonne)
Vehicles = 1309 / 1310 (99.92\%)

Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-783

Site:	Emerald Falls Road.0.1NS
Description:	Intersection Henry Hannam Dr (After Event) @ Ch 80<100>
Filter time:	11:27 Wednesday, 19 July 2023 => 11:13 Wednesday, 26 July 2023
Scheme:	Vehicle classification (AustRoads94)
Filter:	Cls(1-12) Dir(NESW) Sp(10,160) Headway(>0) Span(0-100) Lane(0-16)

MetroCount Traffic Executive Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-768 -- English (ENA)

Datasets:

Site:
Attribute:
Direction:
Survey Duration:
Zone:
File:
Identifier:
Algorithm:
Data type:
Profile:
Filter time:
Included classes:
Speed range:
Direction:
Separation:
Name:
Scheme:
Units:
In profile:
[Kay Road] Intersection Kennedy H-Way (During Event) @ Ch 100 <100> Mareeba
5 - South bound A>B, North bound B>A. Lane: 0
12:06 Wednesday, 12 July 2023 => 10:41 Wednesday, 19 July 2023,
Kay Road 0 2023-07-19 1042.EC0 (Plus)
VW61R1VD MC5900-X13 (c)MetroCount 09Nov16
Factory default axle (v5.07)
Axle sensors - Paired (Class/Speed/Count)

12:07 Wednesday, 12 July 2023 => 10:41 Wednesday, 19 July 2023 (6.94074)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
$10-160 \mathrm{~km} / \mathrm{h}$.
North, East, South, West (bound), $P=$ North, Lane $=0-16$
Headway > 0 sec, Span 0-100 metre
Default Profile
Vehicle classification (AustRoads94)
Metric (metre, kilometre, $\mathrm{m} / \mathrm{s}, \mathrm{km} / \mathrm{h}, \mathrm{kg}$, tonne)
Vehicles = $1341 / 1388$ (96.61\%)

Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-768
Site: Kay Road.0.1SN
Description: Intersection Kennedy H-Way (During Event) @ Ch 100 <100>
Filter time
Scheme:
Filter:

[^1]
MetroCount Traffic Executive Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-799 -- English (ENA)

Datasets:

Site:
Attribute:
Direction:
Survey Duration:
Zone:
File:
Identifier:
Algorithm:
Data type:
Profile:
Filter time:
Included classes:
Speed range:
Direction:
Separation:
Name:
Scheme:
Units:
In profile:
[Kay Road] Intersection Kennedy H-Way (After Event) @ Ch 100 <100> Mareeba
5 - South bound $A>B$, North bound $B>A$. Lane: 0
10:43 Wednesday, 19 July 2023 => 11:58 Wednesday, 26 July 2023,
Kay Road 0 2023-07-26 1158.EC0 (Plus)
VW61R1VD MC5900-X13 (c)MetroCount 09Nov16
Factory default axle (v5.07)
Axle sensors - Paired (Class/Speed/Count)

10:44 Wednesday, 19 July 2023 => 11:58 Wednesday, 26 July 2023 (7.05141)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
$10-160 \mathrm{~km} / \mathrm{h}$.
North, East, South, West (bound), $P=$ North, Lane $=0-16$
Headway > 0 sec, Span 0-100 metre
Default Profile
Vehicle classification (AustRoads94)
Metric (metre, kilometre, $\mathrm{m} / \mathrm{s}, \mathrm{km} / \mathrm{h}, \mathrm{kg}$, tonne)
Vehicles = 1119 / 1133 (98.76\%)

Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-799
Site: Kay Road.0.1SN
Description: Intersection Kennedy H-Way (After Event) @ Ch 100 <100>
Filter time: 10:44 Wednesday, 19 July 2023 => 11:58 Wednesday, 26 July 2023
Scheme: Vehicle classification (AustRoads94)
Filter: $\quad \operatorname{Cls}(1-12) \operatorname{Dir}(N E S W) \operatorname{Sp}(10,160)$ Headway(>0) Span(0-100) Lane(0-16)

	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Averages	
								1-5	1-7
Hour									
0000-0100	0.0	2.0	0.0	0.0	0.0	1.0	0.0	0.4	0.4
0100-0200	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0200-0300	0.0	1.0	0.0	0.0	0.0	2.0	0.0	0.2	0.4
0300-0400	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.4	0.4
0400-0500	2.0	1.0	0.0	5.0	3.0	0.0	0.0	2.2	1.6
0500-0600	2.0	2.0	1.0	1.0	1.0	1.0	0.0	1.4	1.1
0600-0700	24.0	25.0	23.0	23.0	5.0	1.0	1.0	20.0	14.6
0700-0800	15.0	10.0	11.0	8.0	7.0	3.0	3.0	10.2	8.1
0800-0900	8.0	12.0	12.0	13.0	9.0	15.0	8.0	10.8	11.0
0900-1000	8.0	14.0	14.0	13.0	8.0	10.0	11.0	11.4	11.1
1000-1100	12.0	14.0	4.0	19.0	10.0	14.0	13.0	10.5	11.3
1100-1200	8.0	7.0	10.5	7.0	7.0	3.0	12.0	8.3	8.1
1200-1300	12.0	6.0	6.0	23.0	4.0	4.0	9.0	10.2	9.1
1300-1400	8.0	7.0	9.0	13.0	10.0	3.0	7.0	9.4	8.1
1400-1500	13.0	14.0	3.0	11.0	7.0	17.0	4.0	9.6	9.9
1500-1600	9.0	14.0	11.0	10.0	8.0	5.0	4.0	10.4	8.7
1600-1700	12.0	11.0	21.0	21.0	9.0	9.0	14.0	14.8	13.9
1700-1800	31.0	37.0	30.0	16.0	6.0	4.0	5.0	24.0	18.4
1800-1900	5.0	10.0	10.0	11.0	10.0	1.0	12.0	9.2	8.4
1900-2000	4.0	7.0	7.0	4.0	3.0	4.0	3.0	5.0	4.6
2000-2100	3.0	5.0	3.0	6.0	1.0	2.0	3.0	3.6	3.3
2100-2200	2.0	1.0	1.0	3.0	6.0	1.0	5.0	2.6	2.7
2200-2300	1.0	0.0	0.0	2.0	3.0	1.0	1.0	1.2	1.1
2300-2400	1.0	1.0	0.0	0.0	2.0	0.0	0.0	0.8	0.6
Totals									
0700-1900	141.0	156.0	141.5	165.0	95.0	88.0	102.0	138.8	126.2
0600-2200	174.0	194.0	175.5	201.0	110.0	96.0	114.0	170.0	151.4
0600-0000	176.0	195.0	175.5	203.0	115.0	97.0	115.0	172.0	153.1
0000-0000	180.0	201.0	177.5	209.0	120.0	102.0	115.0	176.6	157.1
AM Peak	0600	0600	0600	0600	1000	0800	1000		
	24.0	25.0	23.0	23.0	10.0	15.0	13.0		
PM Peak	1700	1700	1700	1200	1800	1400	1600		
	31.0	37.0	30.0	23.0	10.0	17.0	14.0		

[^2]
MetroCount Traffic Executive Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-773 -- English (ENA)

Datasets:

Site:
Attribute:
Direction:
Survey Duration:
Zone:
File:
Identifier:
Algorithm:
Data type:
Profile:
Filter time:
Included classes:
Speed range:
Direction:
Separation:
Name:
Scheme:
Units:
In profile:
[Kay Road] Intersection Kennedy H-Way (During Event) @ Ch 3040 <100> Mareeba
7 - North bound A>B, South bound B>A. Lane: 0
12:47 Wednesday, 12 July 2023 => 10:51 Wednesday, 19 July 2023,
Kay Road 0 2023-07-19 1051.EC0 (Plus)
CS916NHM MC56-L5 [MC55] (c)Microcom 19Oct04
Factory default axle (v5.07)
Axle sensors - Paired (Class/Speed/Count)

12:48 Wednesday, 12 July 2023 => 10:51 Wednesday, 19 July 2023 (6.91914)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
$10-160 \mathrm{~km} / \mathrm{h}$.
North, East, South, West (bound), $P=$ North, Lane $=0-16$
Headway > 0 sec, Span 0-100 metre
Default Profile
Vehicle classification (AustRoads94)
Metric (metre, kilometre, m/s, km/h, kg, tonne)
Vehicles = 327 / 328 (99.70\%)

Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-773

Site:	Kay Road.0.1NS
Description:	Intersection Kennedy H-Way (During Event) @ Ch $\mathbf{3 0 4 0 < 1 0 0 >}$
Filter time:	12:48 Wednesday, 12 July 2023 => 10:51 Wednesday, 19 July 2023
Scheme:	Vehicle classification (AustRoads94)
Filter:	Cls(1-12) Dir(NESW) Sp(10,160) Headway(>0) Span(0-100) Lane(0-16)

[^3]
MetroCount Traffic Executive Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-794 -- English (ENA)

Datasets:

Site:
Attribute:
Direction:
Survey Duration:
Zone:
File:
Identifier:
Algorithm:
Data type:
Profile:
Filter time:
Included classes:
Speed range:
Direction:
Separation:
Name:
Scheme:
Units:
In profile:
[Kay Road] Intersection Kennedy H-Way (After Event) @ Ch 3040 <100> Mareeba
7 - North bound $A>B$, South bound $B>A$. Lane: 0
10:57 Wednesday, 19 July 2023 => 11:55 Wednesday, 26 July 2023,
Kay Road 0 2023-07-26 1156.EC0 (Plus)
CS916NHM MC56-L5 [MC55] (c)Microcom 19Oct04
Factory default axle (v5.07)
Axle sensors - Paired (Class/Speed/Count)

10:58 Wednesday, 19 July 2023 => 11:55 Wednesday, 26 July 2023 (7.03998)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
$10-160 \mathrm{~km} / \mathrm{h}$.
North, East, South, West (bound), $P=$ North, Lane $=0-16$
Headway > 0 sec, Span 0-100 metre
Default Profile
Vehicle classification (AustRoads94)
Metric (metre, kilometre, m/s, km/h, kg, tonne)
Vehicles = 366 / 366 (100.00\%)

Weekly Vehicle Counts (Virtual Week)

VirtWeeklyVehicle-794

Site:
Description:
Filter time:
Scheme:
Filter:

* - No data.

Appendix C
Kanjini Co-Op Vehicle Data

Kanjini Co-Op Ltd
Living Sustainable Solutions
ABN: 87442541016

30th June 2022

To:
Mareeba Shire Council
65 Rankine Street
Mareeba, 4880 QLD

RE: Expected traffic movements regarding MCU/22/0002

Dear Councillors and Council Officers,
We understand that council might wish to require us to engage an independent consultant to provide a traffic report to council for this Development Application.

We rather see more funds go towards roads than to consultants, so we herewith offer what we believe to be very generous road contributions for the various aspects and stages of our Development Application.

This offer is made with a condition that should council continue to insist on a consultant's report, this offer becomes void.
Should such report provide lower traffic estimates than we offer here, those lower report figures will be used and we m also argue and request that the consultant's fee be reimbursed to us.

HISTORICAL DATA:

To establish a base line and to explore any differentiation from initially estimated to actual traffic movements, firstly we wish to share the actual yearly road usage date for our current 13 camp sites:

Kanjini Co-Op Ltd.
Post: P O Box 51 Kuranda QLD 4881 Phone: 07-0499620260
Email: info@kanjini.org URL: www.kanjini.org

	bookings received	cars	cars per	Book	paid	Cancel		Arrived	C	
		registered	booking	number	\%	number	\%	\%	paid	\%
2018	173	339	1.96	120	69.4	5	4.2	66.5	35	29.2
2019	212	413	1.95	159	75	10	6.3	70.3	38	23.9
2020	361	751	2.08	330	91.4	35	10.6	81.7	49	14.8
2021	357	712	1.99	295	82.6	15	5.1	78.4	52	17.6
Total	1103	2215	2.01	904	82	65	7.2	76.1	174	19.2
$20 / 21$ average	359	732	2.04	313	87.2	25	8	80.2	51	16.3

During the 2018 and 2019 calendar years we operated only 6 camp sites. In December 2019 we opened another seven camp sites, so for this exercise I will use the average for the last two years of 732 cars which were registered with us.
87.2% of received bookings were paid for and 8% of those were then cancelled before arrival
Only 80.2% of bookings made actually arrived, leading to 19.8% less cars arriving then being registered.

Camper's cars are required to be registered on the online booking form. For a few bookings additional cars are registered by email later. We do not keep count of those, but guesstimate this to result in an extra 10-20\% cars arriving. Our security cameras show that only about 5-10\% of campers leave and return to the property while camping and almost all of those do that only once.

Consequently actual yearly vehicle movements caused by our existing camp sites (averaged over the last two years) were: 732 cars $-19.8 \%=587$ cars + $15-30 \%=675$ to 763 cars or $1350-1526$ vehicle movements per year, which is still $16-26 \%$ lower than the 1,825 vehicle movements per year we estimated and paid for in our initial 2014 Development Application.

Average actual VMpY for each camp site were 100 to 117 , compared with initially estimated 140. This comparison shows that our estimates are certainly erring on the side of caution and are favouring council.
16.3% of total bookings were for camp 2, which equals between 220 to 249 vehicle movements / year were on Emerald Falls Road and between 1,130 and 1,277 vehicle movements / year on Kay Road, because our camp 2 is by far the most popular and allows for larger groups.

For the twelve camp sites accessible from Kay road, the average vehicle movements caused by each camp has been 94 to 106 per year.

> Kanjini Co-Op Ltd.
> Post: P O Box 51 Kuranda QLD 4881 Phone: 07-0499620260
> Email: info@kanjini.org URL: www.kanjini.org

Appendix D
Extract from TMR Guideline "Event Traffic Management Design Guidelines"

Guideline

Event Traffic Management Design Guidelines

July 2022

Copyright

© The State of Queensland (Department of Transport and Main Roads) 2022.

Licence

This work is licensed by the State of Queensland (Department of Transport and Main Roads) under a Creative Commons Attribution (CC BY) 4.0 International licence.

CC BY licence summary statement

In essence, you are free to copy, communicate and adapt this work, as long as you attribute the work to the State of Queensland (Department of Transport and Main Roads). To view a copy of this licence, visit: https://creativecommons.org/licenses/by/4.0/

Translating and interpreting assistance

The Queensland Government is committed to providing accessible services to Queenslanders from all cultural and linguistic backgrounds. If you have difficulty understanding this publication and need a translator, please call the Translating and Interpreting Service (TIS National) on 131450 and ask them to telephone the Queensland Department of Transport and Main Roads on 137468.

Disclaimer

While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained within. To the best of our knowledge, the content was correct at the time of publishing.

Feedback

Please send your feedback regarding this document to: tmr.techdocs@tmr.qld.gov.au

Contents

1 Introduction 1
1.1 Scope 1
1.1.1 Relationship to the temporary traffic management manuals and guidelines 1
1.2 Objective 1
1.3 Principles 1
1.4 Innovation 2
1.5 Roles and responsibilities 2
1.6 Responsibility for safety 3
2 Planning event traffic management 3
2.1 Events 3
2.1.1 Design principles 4
2.2 Event traffic management plans 4
2.3 Process 5
2.4 Inputs 6
2.4.1 Event organiser inputs 6
2.4.2 Other inputs 7
2.5 Scoping process 7
2.5.1 Size / scale 7
2.5.2 Type 7
2.5.3 Timing and duration 8
2.5.4 Activities 8
2.5.5 Location 8
2.5.6 Access 9
2.5.7 Parking 9
2.5.8 Logistics 10
2.6 Risk management 10
2.7 Options analysis. 11
2.7.1 Around (QGTTM Part 3 Section 3) 11
2.7.2 Through (QGTTM Part 3 Section 4) 11
2.7.3 Past (QGTTM Part 3 Section 5) 11
2.7.4 Short-term low impact (QGTTM Part 5) 11
2.7.5 Mobile (QGTTM Part 4) 11
2.8 Event staging plans 12
2.9 Traffic guidance schemes 12
2.10 Traffic controllers, police and event traffic marshals 13
2.10.1 Use of event traffic marshals 13
2.11 Implementation and removal 14
2.12 Notification and communication 15
2.12.1 Road users and residents 15
2.12.2 Road infrastructure manager 15
2.12.3 Public transport. 15
2.12.4 Emergency services 15
2.12.5 Security 16
2.13 Incident management 16
2.14 Post event traffic management plan evaluation 16
3 Designing for events 16
3.1 Overview 16
3.2 Advance warning 17
3.2.1 Official traffic signs for events 17
3.2.2 EVENT AHEAD (ETM01) 19
3.2.3 EVENT IN PROGRESS (ETMO2) 20
3.2.4 END EVENT (ETMO3) 21
3.2.5 Cyclists Racing (symbolic) (ETM04) 21
3.2.6 Cyclists Riding (symbolic) (ETM05) 22
3.2.7 Share the Road (event) (ETM06, ETM09, ETM13) 22
3.2.8 Runners (symbolic) (ETMO7) 24
3.2.9 Walkers (symbolic) (ETM08) 24
3.2.10 NEXT ...km (ETM10). 25
3.2.11 CYCLING EVENT day / date (ETM11). 26
3.2.12 CYCLISTS AHEAD / FOLLOWING (ETM12) 26
3.3 Separating participants and spectators from traffic 27
3.3.1 Risk factors 27
3.3.2 Control measures 28
3.4 Managing conflict points 30
4 Static events 41
4.1 Types 41
4.1.1 On-road events 41
4.1.2 Off-road events 41
4.2 Risks 42
4.3 Specific considerations 42
5 Cycling events 43
5.1 Types 43
5.1.1 Road races 43
5.1.2 Rides and touring 43
5.2 Risks 44
5.3 Specific considerations 44
5.3.1 Width 44
5.3.2 Temporary restrictions 45
6 Pedestrian / running events 45
6.1 Types 45
6.2 Risks 46
6.3 Specific considerations 46
6.3.1 Width 46
6.3.2 Participant compliance with road rules 46
7 Parades / marches 46
7.1 Types 46
7.2 Risks 47
7.3 Specific considerations 47
8 Convoys and vehicle touring 48
8.1 Types 48
8.2 Risks 48
8.3 Specific considerations 48
8.3.1 Maintaining convoy integrity 48
8.3.2 Speed differential 49
8.3.3 Security requirements 49
Appendix A 50
Tables
Table 1.5 - Definitions 2
Table 3.2.1 - Signs for events 18
Table 3.3.2 - Control options 28
Figures
Figure 2.3 - Event traffic management plan development process 6
Figure 3.2.2(a) - EVENT AHEAD (ETM01_1) 19
Figure 3.2.2(b) - EVENT AHEAD (ETM01_2) 19
Figure 3.2.3(a) - EVENT IN PROGRESS (ETM02_1) 20
Figure 3.2.3(b) - EVENT IN PROGRESS (ETM02_2) 20
Figure 3.2.3(c) - EVENT IN PROGRESS (ETM02_3) 20
Figure 3.2.4(a) - END EVENT (ETM03_1) 21
Figure 3.2.4(b) - END EVENT (EMT03_2) 21
Figure 3.2.5(a) - Cyclists Racing (symbolic) (ETM04_1) 21
Figure 3.2.5(b) - Cyclists Racing (symbolic) (ETM04_2) 21
Figure 3.2.6(a) - Cyclists Riding (symbolic) (ETM05_1) 22
Figure 3.2.6(b) - Cyclists Riding (symbolic) (ETM05_2) 22
Figure 3.2.7(a) - Share the Road (ETM06_1) 23
Figure 3.2.7(b) - Share the Road (ETM06_2) 23
Figure 3.2.7(c) - Share the Road (ETM09_1) 23
Figure 3.2.7(d) - Share the Road (ETM09_2) 23
Figure 3.2.7(e) - SHARE THE ROAD (ETM13_1) 23
Figure 3.2.7(f) - SHARE THE ROAD (ETM13_2) 23
Figure 3.2.8(a) - Runners (symbolic) (ETM07_1) 24
Figure 3.2.8(b) - Runners (symbolic) (ETM07_2) 24
Figure 3.2.9(a) - Walkers (symbolic) (ETM08_1) 24
Figure 3.2.9(b) - Walkers (symbolic) (ETM08_2) 25
Figure 3.2.10(a) - NEXT ...km (ETM10_1) 25
Figure 3.2.10(b) - NEXT ...km (ETM10_2) 25
Figure 3.2.11(a) - CYCLING EVENT (ETM11_1) 26
Figure 3.2.11(b) - Day / Date (ETM11_2) 26
Figure 3.2.12(a) - CYCLISTS AHEAD (ETM12_1) 26
Figure 3.2.12(b) - CYCLISTS FOLLOWING (ETM12_2) 26
Figure 3.3.1 - Risk factors and control measures 27
Figure 3.4(a) - Unsignalised intersection: right turn from through road 32
Figure 3 4(b) - Unsignalised intersection: right turn from side road 33
Figure 3.4(c) - Unsignalised intersection: left turn from side road 34
Figure 3.4(d) - Unsignalised intersection: through from side road 35
Figure 3.4(e) - Unsignalised intersection: through from through road 36
Figure 3.4(f) - Unsignalised intersection: through road closed 37
Figure $3.4(\mathrm{~g})$ - Unsignalised intersection: side road closed 37
Figure 3.4(h) - Through road: U-turn 38
Figure 3.4(i) - Pedestrian / cyclist crossing facility: close to intersection 39
Figure 3.4(j) - Pedestrian / cyclist crossing facility: mid-block 39
Figure 3.4(k) - Roundabout: right turn, left turn, through or U-turn. 40
Figure A1 - Unsignalised intersection: through road closed 50
Figure A2 - Pedestrian / cyclist crossing facility: mid-block 51

Appendix E

Vehicle Axle Loading Configurations

Hilux GGN25, KUN26

Front Axle Capacity

Since January, 2005, the Toyota Hilux Workmate (WM), SR and SR5 grade 4×4 models fitted only with either 205 R16C or 255/70 R15C tyre size are capable of increasing the front axle loads to 1300 kgs. There is an additional tyre loading information placard that certifies this, which is situated above the standard tyre placard located inside the drivers door opening.

The front axle capacity can be increased VR 1300 kgs with the following tyre pressure DGXXWF HQN

1. Tyre size 205R16C-8PR 110/108S - Cold tyre pressure increased to 260 kPa .
2. Tyre size $255 / 70 \mathrm{R} 15 \mathrm{C}$ 112/110S - Cold tyre pressure remains at 200 kPa .

Toyota Hilux SR5 \& SR with VSC option grade 4×4 models fitted with 265/65 R17C 112 tyre size have a front axle capacity of 1280 kg .
Additional information is available on the vehicles actual Tyre Loading Information Decal or within the vehicle's Owner Manual under the headings "tires or weight limits".
This axle loading specification supersedes the axle loading specification in the Repair Manual and Body Builders Guide.

Please use this information to respond to owner enquiry on this subject.

```
- Gross axle weight
The load on either the front or rear axle resulting from distribution of the gross vehicle weight on both axles must not exceed the following:
2WD models
Single-cab models
Front: 1145 kg ( 2524 lb )
Rear: 1750 kg ( 3858 lb )
Extra-cab models
Front: 1200 kg (2646 lb)
Rear: 1725 kg ( 3803 lb )
Double-cab models
Front: \(1200 \mathrm{~kg}(2646 \mathrm{lb})\)
Rear: 1550 kg ( 3417 lb )
4WD models
Front: \(1280 \mathrm{~kg}(2822 \mathrm{lb})\)
Rear: \(1600 \mathrm{~kg}(3527 \mathrm{lb})\)
Alternate Front Axle Capacity (Four-wheel drive models only) Where Toyota genuine accessories are fitted, such as a steel bullbar and winch combination, or for specific vehicle passenger/ payload combination requirements, then front axle capacity can be increased as shown below:
Tire size 255/70R15C 112/110S
Front 1300 kg ( 2866 lb )
Tire size 205R16C-8PR 110/108S
Front \(1300 \mathrm{~kg}^{*}\) ( 2866 lb )
\({ }^{*}\) Cold tire inflation pressure must be increased to 260 kPa . Please refer to the vehicle tire pressure label or page 406 for tire pressure specification summary.
```


IVECO

DIMENSIONS (mm)

\mathbf{X}	Wheelbase
\mathbf{Y}	Rear overhang
\mathbf{K}	Overall length
\mathbf{H}	Overall height - unladen
\mathbf{O}	Front track
\mathbf{N}	Rear track
\mathbf{E}	Overall width (Cab)
	Turning circle kerb to kerb
	Turning circle wall to wall

CARGO AREA (mm)

Volume $\left(\mathrm{m}^{3}\right)$
Internal length
Internal width
Height of loading floor - unladen
Wheel house distance (int.)
Rear door opening width
Rear door opening height
Side door opening width

MASS (kg)

GVM
TCM
Towing capacity with braked trailer
Rear axle capacity capacity
Kerb mass front axle
Kerb mass rear axle
Kerb mass total**
Payload capacity

- 3500kg GVM and 6700kg GCM with rear air suspension
"* Kerb masses are with minimal fuel, spare wheel, tools and no driver

35 SI 4 V Euro VI
$\frac{\frac{3000}{\frac{1119}{5476}} \frac{\frac{1745}{1704}}{\frac{2010}{10546}}}{\underline{11200}}$

35SI4V Euro VI

7.3	9	12	16
2610	3130	3540	4680
1740	1740	1740	1740
1545 (HI)	1545 (HI)	1900 (H2)	1900 (H2)
715	685	682	685
1317	1317	1317	1317
1530	1530	1530	1530
1450	1450	1800	1800
1100	1260	1260	1260
1425	1425	1800	1800

35 SI 4 V Euro VI
$\frac{\frac{3800^{*}}{\frac{7000}{3200}}}{\frac{1900}{\frac{2240}{1359}}} \frac{\frac{806}{2165}}{1635}$
$\frac{\frac{3800^{*}}{7000}}{\frac{3200}{1900}} \frac{\frac{2240}{1444}}{\frac{777}{2221}}$
$\frac{\frac{3800 *}{7000}}{\frac{3200}{\frac{1900}{2240}}} \frac{\frac{1372}{907}}{\frac{2279}{1521}}$
$\frac{\frac{3800 *}{7000}}{\frac{3200}{1900}} \frac{\frac{2240}{1420}}{\frac{1013}{2433}}$

35 SI 8 V EuroVI
$\frac{\frac{3520}{\frac{1119}{5687}}}{\frac{2281}{\frac{1740}{1704}}} \frac{\frac{2010}{12084}}{\frac{12744}{}}$
35SI8V EuroVI

9	12	16
3130	3540	4680
1740	1740	1740
1545 (HI)	$1900(\mathrm{H} 2)$	1900 (H2)
685	682	685
1317	1317	1317
1530	1530	1530
1450	1800	1800
1260	1260	1260
1425	1800	1800

35SI8V Euro VI

3800*	3800*	3800*
7000	7000	7000
3200	3200	3200
1900	1900	1900
2240	2240	2240
1447	1375	1421
788	919	1020
2235	2294	2441
1565	1506	1359

35S2IV Euro VI

3520	3520L	4100
1119	1519	2104
5687	6087	7252
2281	2662	2665
1740	1740	1740
1704	1704	1704
2010	2010	2010
12084	12084	13800
12744	12744	14466

35S2IV Euro VI

9	12	16
3130	3540	4680
1740	1740	1740
1545 (HI)	1900 (H2)	1900 (H2)
685	682	685
1317	1317	1317
1530	1530	1530
1450	1800	1800
1260	1260	1260
1425	1800	1800

35S2IV Euro VI

3800*	3800*	3800*
7000	7000	7000
3200	3200	3200
1900	1900	1900
2240	2240	2240
1447	1375	1421
788	919	1020
2235	2294	2441
1565	1506	1369

DヘILY
SPECIFICATIONS 50CVAN

DIMENSIONS (mm)	50 Cl 8 V Euro VI				50 C 2 IV Euro VI			
\mathbf{X} Wheelbase	3520L	4100	4100	4100L	3520 L	4100	4100	4100L
Y Rear overhang	1541	2126	2126	2526	1541	2126	2126	2526
\mathbf{K} Overall length	6109	7274	7274	7674	6109	7274	7274	7674
H Overall height - unladen	2748	2752	2944	2945	2748	2752	2944	2945
O Front track	1724	1724	1724	1724	1724	1724	1724	1724
N Rear track	1542	1542	1542	1542	1542	1542	1542	1542
E Overall width (Cab)	2010	2010	2010	2010	2010	2010	2010	2010
Turning circle kerb to kerb	12744	14564	14564	14564	12744	14564	14564	14564
Turning circle wall to wall	13366	15190	15190	15190	13366	15190	15190	15190
CARGO AREA (mm)	50CI8V EuroVI				50C2IV Euro VI			
Volume (m^{3})	12	16	18	19.6	12	16	18	19.6
Internal length	3540	4680	4680	5125	3540	4680	4680	5125
Internal width	1740	1740	1740	1740	1740	1740	1740	1740
Internal height	1900 (H2)	1900 (H2)	$2100(\mathrm{H} 3)$	2100 (H3)	1900 (H2)	1900 (H2)	2100 (H3)	2100 (H3)
Height of loading floor - unladen	770	774	774	775	770	774	774	775
Wheel house distance (int.)	1032	1032	1032	1032	1032	1032	1032	1032
Rear door opening width	1530	1530	1530	1530	1530	1530	1530	1530
Rear door opening height	1800	1800	2000	2000	1800	1800	2000	2000
Side door opening width	1260	1260	1260	1260	1260	1260	1260	1260
Side door opening height	1800	1800	1800	1800	1800	1800	1800	1800
MASS (kg)	50CI8V Euro VI				50C2IV Euro VI			
GVM	4495	4495	4495	4495	4495	4495	4495	4495
GVM Option	5200	5200	5200	5200	5200	5200	5200	5200
GCM	7995	7995	7995	7995	7995	7995	7995	7995
GCM Option	8700	8700	8700	8700	8700	8700	8700	8700
Towing capacity with braked trailer	3500	3500	3500	3500	3500	3500	3500	3500
Front axle capacity	2100	2100	2100	2100	2100	2100	2100	2100
Rear axle capacity	3700	3700	3700	3700	3700	3700	3700	3700
Kerb mass front axle	1488	1512	1520	1513	1488	1512	1520	1513
Kerb mass rear axle	1065	1177	1193	1230	1065	1177	1193	1230
Kerb mass tota**	2553	2689	2713	2743	2553	2689	2713	2743
Payload capacity	1942	1806	1782	1752	1942	1806	1782	1752

* Kerb masses are with minimal fuel, spare wheel, tools and no driver

DヘILY
SPECIFICATIONS 70C VAN

DIMENSIONS（mm）

\mathbf{X}	Wheelbase
\mathbf{Y}	Rear overhang
\mathbf{K}	Overall length
\mathbf{H}	Overall height unladen
\mathbf{O}	Front track
\mathbf{N}	Rear track
\mathbf{E}	Overall width（Cab）
	Turning circle kerb to kerb
	Turning circle wall to wall

CARGO AREA（mm）

Volume $\left(\mathrm{m}^{3}\right)$
Internal length
Internal width
Internal height
Height of loading floor－unladen
Rear house distance （int．）
Rear door opening width
Side door opening height
Side door opening height

MASS（kg）

GVM
Towing capacity with braked trailer
Front axle capacity
Rear axle capacity
Kerb mass front axle
Kerb mass rear axle
Payload capacity

＂Kerb masses are with minimal fuel，spare wheel，tools and no driver

70 CI 8 V EuroVI

$4100(\mathrm{H} 2)$	$4100(\mathrm{H} 3)$	$4100 \mathrm{~L}(\mathrm{H} 3)$
2116	2116	2516
7264	7264	7664
2849	3041	3054
1725	1725	1725
1660	1660	1660
2052	2052	2052
14108	14108	14108
14758	14758	14758

70CI8V EuroVI
$\frac{\frac{16}{\frac{4680}{1740}} \frac{1900(\mathrm{H} 2)}{871}}{\frac{1032}{1530}} \frac{\frac{1800}{1260}}{1800}$
$\frac{\frac{18}{4680}}{\frac{1740}{2100(\mathrm{H} 3)}} \frac{\frac{871}{1032}}{\frac{1530}{\frac{2000}{1260}}}$
$\frac{\frac{19.6}{\frac{5125}{1740}}}{\frac{2100(\mathrm{H} 3)}{884}} \frac{\frac{1032}{\frac{1530}{2000}}}{\frac{1260}{1800}}$
$\underline{70 \mathrm{Cl} 8 \mathrm{~V} \text { Euro } \mathrm{VI}}$
$\frac{\frac{7000}{\frac{10500}{3500}} \frac{\frac{5500}{5350}}{\frac{1590}{1433}}}{\frac{3023}{3977}}$

$\frac{7000}{\frac{10500}{3500}} \frac{\frac{7000}{2500}}{\frac{5350}{1602}}$	$\frac{\frac{10500}{3500}}{\frac{1445}{3047}}$	$\frac{5350}{1601}$
$\frac{3953}{1475}$		

70C2IV Euro VI

$\frac{\frac{18}{4680}}{\frac{1740}{2100(\mathrm{H} 3)}} \frac{\frac{871}{1032}}{\frac{1530}{2000}} \frac{1260}{1800}$
$\frac{\frac{19.6}{\frac{5125}{1740}} \frac{\frac{2100(\mathrm{H} 3)}{884}}{\frac{1032}{\frac{1530}{1800}}} \frac{1260}{1800}}{}$

70C2IV Euro VI

7000	7000	7000
10500	10500	10500
3500	3500	3500
2500	2500	2500
5350	5350	5350
1590	1602	1601
1433	1445	1475
3023	3047	3076
3977	3953	3924

ENGINE

I36EVID FIA Euro 6 Heavy Duty engine (standard on 35S) 4 stroke diesel with direct-injection, intercooler and electronic-controlled variable geometry turbine (e-VGT).
Maximum Output I36EVID: $100 \mathrm{~kW}(136 \mathrm{hp}) @ 3600 \mathrm{rpm}$
Maximum Torque I36EVID: $350 \mathrm{Nm}(258 \mathrm{ft}-\mathrm{lbs}) @ 1500 \mathrm{rpm}$
180EVID FIC Heavy Duty Euro 6 engine (Standard on 50C \& 70C) 4 stroke diesel with direct-injection, Variable Geometry Turbocharger (VGT) and intercooler
Maximum Output: 180EVID: 132 kW (180 hp) @ 3500 rpm
Maximum Torque: I80EVID: $430 \mathrm{Nm}(317 \mathrm{ft}-\mathrm{lbs}) @ 1500 \mathrm{rpm}$
Emissions Technology: Exhaust Gas Recirculation and Selective Catalytic Reduction Total Displacement: FIA: 2.3 litre, FIC: 3.0 litre
Exhaust: Muffler horizontally positioned on the right side and tailpipe located mid-way down right side of vehicle

Optional Engines available on 35S:

180EVID - Engine FIC 180 Hp Euro 6 Heavy Duty 4 stroke diesel with direct-injection and Variable Geometry Turbine (VGT)
210 EVID - Engine FIC 210 Hp EURO 6 Heavy Duty 4 stroke diesel with
direct-injection and electronically-controlled variable geometry turbine (e-VGT)

Optional Engine available on 50C and 70C:

210EVID - Engine FIC 210 Hp EURO 6 Heavy Duty 4 stroke diesel with
direct-injection and electronically-controlled variable geometry turbine (e-VGT)
Maximum Output: I80EVID: 132 kW (180 hp) @ 3500 rpm
Maximum Torque: I80EVID: $430 \mathrm{Nm}(317 \mathrm{ft}-\mathrm{lbs})$ @ 1500 rpm
Maximum Output: 210EVID: $155 \mathrm{~kW}(210 \mathrm{hp}) @ 3500$
Maximum Torque: 210EVID: $470 \mathrm{Nm}(347 \mathrm{ft}-\mathrm{lbs}) @ 1500$

TRANSMISSION

6-speed Synchromesh Double Overdrive Manual Transmission
Type: 2835.6 DOD (136 hp)
Ist 5.004, 2nd 2.635, 3rd I.503, 4th I.000, 5th 0.812 OD, 6th 0.685 DOD, Rev. 4.189
6-speed Synchromesh Manual Transmission
Type: 2840.6 OD (180 hp) Ist 5.375 , 2nd 3.154, 3rd 2.04I, 4th 1.365 , 5th 1.000 , 6th 0.79 OD, Rev.4.838
Optional Transmission: 8-speed ZF Torque Converter Automatic (Hi-Matic)
Type: 8V470A
Ist 4.696, 2nd 3.130, 3rd 2.104, 4th 1.667, 5th 1.285, 6th 1.000 , 7th 0.839 OD, 8 th 0.667 DOD, Rev. 3.297

STEERING

Type: Hydraulic power steering
Diameter: 380 mm diameter steering wheel with telescopic adjustment

CLUTCH

Type: Single dry plate hydraulic contro
Diameter: 267 mm (136 hp); 280 mm (180 hp)
FRONT AXLE \& SUSPENSION
Capacity: 1900 kg (35S)
Capacity: 2100 kg (50C)
Capacity: 2500 kg (70C)
Suspension Type: Double wishbone with transversal leaf spring (35S)
Suspension Type: Independent with adjustable steel torsion bar (50C and 70C)

REAR AXLE \& SUSPENSION

Capacity: 2430 kg (35S)
Capacity: 3700 kg (50C)
Capacity: 5350 kg (70C)
Suspension Type: Rear parabolic spring
Optional Suspension: ECAS - Rear air suspension (35S 3.5T GVM)
Optional Suspension: ECAS - Rear air suspension (50 C and 70 C)
Capacity: 2240 kg (35S 3.5T GVM)
Rear axle ratio: 35S-3.60: ।
Rear axle ratio: 50C - 3.60:
Rear axle ratio: 70C - 4.30:
Optional Differential: Driver Controlled Differential Lock (50C and 70C)

BRAKES

Front / Diameter: Disc brakes / 300 mm (35S)
Front / Diameter: Disc brakes / 290 mm (50C)
Front / Diameter: Disc brakes / 301 mm (70C)
Rear / Diameter: Disc brakes / 296 mm (35S)
Rear / Diameter: Disc brakes / 290 mm (50C)
Rear / Diameter: Disc brakes / 306 mm (70C)
Parking brake: Electronic
Service brakes: Full ABS disc brakes with floating calipers and auto wear adjustment.
Hydraulically operated with vacuum servo assistance. Dual circuit configuration; cross split on 35 S \& independent from 50 C up to 70 C . Low Brake fluid level indicator - front \& rear pad wear sensors. Asbestos free pads.

SAFETY

- ESP9 - Includes: ABS (Antilock Braking System), EBD (Electronic Brake force Distribution), ASR (Anti Slip Regulator), MSR (Motor Drag torque control) Hill Holder (Assisted uphill departure), HBA (Hydraulic Brake Assist), LAC (Load Adaptive Control), TSM (Trailer sway mitigation), RMI (Roll Movement Intervention), ROM (Roll Over Mitigation) \& Crosswind assist
- Four SRS airbags
- Advanced Emergency Braking System (AEBS)

FUEL SYSTEM

100 litres with fuel cap location on passenger side (70 litres on $7.3 \mathrm{~m}^{3}$) 20 litre Adblue

ELECTRICAL SYSTEM

Type: 12 V
Battery: $12 \mathrm{~V}-110 \mathrm{Ah}$ (Smart-charging)
Smart Alternator: $12 \mathrm{~V}-220 \mathrm{~A}$
Trailer: Wiring to rear of chassis

CHASSIS

Type: C Section steel longitudinal side members and tubular cross members

WHEELS \& TYRES

Wheels: Steel $6.5 \mathrm{~J} \times$ RI6 (35S); Steel $5 \mathrm{~J} \times$ RI6 (50C); Steel $6 \mathrm{~J} \times$ R16 (70C)

- Spare wheel included - in load compartments on some models
- Single rear wheel (35S)
- Dual rear wheels (50 C and 70 C)

Tyre Size: 235/65 RI6 (35S); 195/75 R16 (50C); $225 / 75$ RI6 (70C)

CABIN FEATURES

- Driver, passenger and curtain airbags with seat belt pretensioners
- Suspended, heated and fully adjustable driver seat with armrest
- Bench seat with two occupant capacity, under seat storage and fold down table
- Adaptive cruise contro
- Electric windows
- Exterior mirrors with integrated wide angle and direction indicators, heated and electronically adjustable
- Overhead console with storage shelf
- Large dual storage pockets in doors
- Document storage compartment
- Body builder connections
- 2 cup and $2 x$ bottle holders
- Air conditioning
- Electronic parking brake
- Ecoswitch Pro
- 2 spotlights
- 4 loud speakers

LIGHTS

- Daytime running lights
- Optional full LED headlights

DASHBOARD

- 3.5" high resolution TFT colour display and silver dial rings
- TFT Display Panel includes: digital speedometer, ADAS (Advanced Driver-Assistance Systems) dashboard, ADAS quick menu, TPMS, oil, battery and service information. Navigation and phone multimedia, fuel economy, trip computer, vehicle settings, display settings and diagnostics.
- Engine oil level display
- Instrument light dimmer switch
- Dash-mounted gear lever
- 3 storage areas on top of dash
- MP3 player, USB and AUX connectivity, Bluetooth with steering wheel controls

SECURITY

- Central locking with remote control
- Steering lock
- Engine immobiliser
- Run Lock Function (Only available if Expansion Module option is selected)

LOAD AREA

- Floor - steel ribbed with load lashing rings
- Side access via top hung side sliding door internal step and grab handle
- Rear access by hinged doors with stops at 90° and $270^{\circ}\left(180^{\circ}\right.$ on $\left.7.3 \mathrm{m3}\right)$ and grab handle
- Interior lights at side and rear (door operated with individual isolation)
- Full bulkhead with window

Overview

Model SCT6703XZB53LEX

Brand Name	Toyota Coaster
Bulletin	\#247
Type of vehicle	LFME1581
VIN	China
Country of origin	SCT6703
Chassis	

mfg by Sichuan FAW Toyota Motor Co., Ltd., China

(\$) Technical specifications

Performance	
Fuel	diesel fuel
Environmental standard	National IV/Euro 4
Maximum speed	$120 \mathrm{~km} / \mathrm{h}$
ABS	have

Capacity

Passenger capacity (including driver)	$10-23$

Weights and Ground pressure

	3670 kg,
Curb weight	3680 kg,
	3835 kg
Gross vehicle weight rating	5500 kg
	$2300 \mathrm{~kg} / 3200 \mathrm{~kg}$
Axle load distribution	$2.3 \mathrm{t} / 3.2 \mathrm{t}$

[^0]: Note—A supporting Ecological Assessment Report is prepared in accordance with Planning Scheme Policy 2 - Ecological Assessment Reports.

[^1]: * - No data.

[^2]: Map Grid of Australia Zone 55 (GDA94)

 ## Kay Rd - TC Location CH 3040

 © 2022 Mareeba Shire Council (MSC). Based on or contains data provided by MSC and The State of Queensland (Department of Resources) [2022]. In consideration of these agencies permitting use of this data you acknowledge and agree that these agencies give no warranty in relation to the data (including accuracy, reliability, completeness, currency or suitability) and accept no liability use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.

[^3]: * - No data.

